11.6.1 Faithful Functors

    Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

    A functor $F\colon \mathcal{C}\to \mathcal{D}$ is faithful if, for each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the action on morphisms

    \[ F_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright ) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]

    of $F$ at $\webleft (A,B\webright )$ is injective.

    Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.

    1. 1.

      Interaction With Composition. If $F$ and $G$ are faithful, then so is $G\circ F$.

    2. 2.

      Interaction With Postcomposition. The following conditions are equivalent:

      1. (a)

        The functor $F\colon \mathcal{C}\to \mathcal{D}$ is faithful.

      2. (b)

        For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor

        \[ F_{*} \colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright ) \to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]

        is faithful.

      3. (c)

        The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a representably faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 13: Types of Morphisms in Bicategories, Definition 13.1.1.1.1.

    3. 3.

      Interaction With Precomposition I. Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

      1. (a)

        If $F$ is faithful, then the precomposition functor

        \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

        can fail to be faithful.

      2. (b)

        Conversely, if the precomposition functor

        \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

        is faithful, then $F$ can fail to be faithful.

    4. 4.

      Interaction With Precomposition II. If $F$ is essentially surjective, then the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

      is faithful.

    5. 5.

      Interaction With Precomposition III. The following conditions are equivalent:

      1. (a)

        For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the precomposition functor

        \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

        is faithful.

  • (b)

    For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the precomposition functor

    \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

    is conservative.

  • (c)

    For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the precomposition functor

    \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

    is monadic.

  • (d)

    The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a corepresentably faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 13: Types of Morphisms in Bicategories, Definition 13.2.1.1.1.

  • (e)

    The components

    \[ \eta _{G}\colon G\Longrightarrow \operatorname {\mathrm{Ran}}_{F}\webleft (G\circ F\webright ) \]

    of the unit

    \[ \eta \colon \operatorname {\mathrm{id}}_{\mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )}\Longrightarrow \operatorname {\mathrm{Ran}}_{F}\circ F^{*} \]

    of the adjunction $F^{*}\dashv \operatorname {\mathrm{Ran}}_{F}$ are all monomorphisms.

  • (f)

    The components

    \[ \epsilon _{G}\colon \operatorname {\mathrm{Lan}}_{F}\webleft (G\circ F\webright )\Longrightarrow G \]

    of the counit

    \[ \epsilon \colon \operatorname {\mathrm{Lan}}_{F}\circ F^{*}\Longrightarrow \operatorname {\mathrm{id}}_{\mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )} \]

    of the adjunction $\operatorname {\mathrm{Lan}}_{F}\dashv F^{*}$ are all epimorphisms.

  • (g)

    The functor $F$ is dominant (Definition 11.7.1.1.1), i.e. every object of $\mathcal{D}$ is a retract of some object in $\mathrm{Im}\webleft (F\webright )$:

    • (★)
    • For each $B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{D}\webright )$, there exist:
      • An object $A$ of $\mathcal{C}$;

      • A morphism $s\colon B\to F\webleft (A\webright )$ of $\mathcal{D}$;

      • A morphism $r\colon F\webleft (A\webright )\to B$ of $\mathcal{D}$;

      such that $r\circ s=\operatorname {\mathrm{id}}_{B}$.
  • Item 1: Interaction With Composition
    Since the map

    \[ \webleft (G\circ F\webright )_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright ) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}\webleft (G_{F_{A}},G_{F_{B}}\webright ), \]

    defined as the composition

    \[ \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright )\xrightarrow {F_{A,B}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright )\xrightarrow {G_{F\webleft (A\webright ),F\webleft (B\webright )}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}\webleft (G_{F_{A}},G_{F_{B}}\webright ), \]

    is a composition of injective functions, it follows from Unresolved reference that it is also injective. Therefore $G\circ F$ is faithful.

    Item 2: Interaction With Postcomposition
    Omitted.

    Item 3: Interaction With Precomposition I
    See [Lin, Precomposition with a faithful functor] for Item 3a. Item 3b follows from Item 4 and the fact that there are essentially surjective functors that are not faithful.

    Item 4: Interaction With Precomposition II
    Omitted, but see for a formalised proof.

    Item 5: Interaction With Precomposition III
    We claim Item 5a, Item 5b, Item 5c, Item 5d, Item 5e, Item 5f, and Item 5g are equivalent:

    This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: