A functor $F\colon \mathcal{C}\to \mathcal{D}$ is faithful if, for each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the action on morphisms
of $F$ at $\webleft (A,B\webright )$ is injective.
Let $\mathcal{C}$ and $\mathcal{D}$ be categories.
A functor $F\colon \mathcal{C}\to \mathcal{D}$ is faithful if, for each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the action on morphisms
of $F$ at $\webleft (A,B\webright )$ is injective.
Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.
Interaction With Composition. If $F$ and $G$ are faithful, then so is $G\circ F$.
Interaction With Postcomposition. The following conditions are equivalent:
The functor $F\colon \mathcal{C}\to \mathcal{D}$ is faithful.
For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor
is faithful.
The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a representably faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 13: Types of Morphisms in Bicategories, Definition 13.1.1.1.1.
Interaction With Precomposition I. Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.
If $F$ is faithful, then the precomposition functor
can fail to be faithful.
Conversely, if the precomposition functor
is faithful, then $F$ can fail to be faithful.
Interaction With Precomposition II. If $F$ is essentially surjective, then the precomposition functor
is faithful.
Interaction With Precomposition III. The following conditions are equivalent:
For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the precomposition functor
is faithful.
For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the precomposition functor
is conservative.
For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the precomposition functor
is monadic.
The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a corepresentably faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 13: Types of Morphisms in Bicategories, Definition 13.2.1.1.1.
The components
of the unit
of the adjunction $F^{*}\dashv \operatorname {\mathrm{Ran}}_{F}$ are all monomorphisms.
The components
of the counit
of the adjunction $\operatorname {\mathrm{Lan}}_{F}\dashv F^{*}$ are all epimorphisms.
The functor $F$ is dominant (Definition 11.7.1.1.1), i.e. every object of $\mathcal{D}$ is a retract of some object in $\mathrm{Im}\webleft (F\webright )$:
An object $A$ of $\mathcal{C}$;
A morphism $s\colon B\to F\webleft (A\webright )$ of $\mathcal{D}$;
A morphism $r\colon F\webleft (A\webright )\to B$ of $\mathcal{D}$;
defined as the composition
is a composition of injective functions, it follows from that it is also injective. Therefore $G\circ F$ is faithful.
Item 5a and Item 5d Are Equivalent: This is true by the definition of corepresentably faithful morphism; see Chapter 13: Types of Morphisms in Bicategories, Definition 13.2.1.1.1.
Item 5a, Item 5b, Item 5c, and Item 5g Are Equivalent: See Proposition 4.1 of [AESV, On Functors Which Are Lax Epimorphisms] or alternatively Lemmas 3.1 and 3.2 of [Frey, On the 2-Categorical Duals of (Full and) Faithful Functors] for the equivalence between Item 5a and Item 5g.
This finishes the proof.