Let $X$ be a set.
-
1.
The indiscrete category on $X$1 is the category $X_{\mathsf{indisc}}$ where
-
•
Objects. We have
\[ \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{indisc}}\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X. \] -
•
Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{indisc}}\webright )$, we have
\begin{align*} \operatorname {\mathrm{Hom}}_{X_{\mathsf{disc}}}\webleft (A,B\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft [A\webright ]\to \webleft [B\webright ]\right\} \\ & \cong \mathrm{pt}. \end{align*} -
•
Identities. For each $A\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{indisc}}\webright )$, the unit map
\[ \mathbb {1}^{X_{\mathsf{indisc}}}_{A} \colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}\webleft (A,A\webright ) \]of $X_{\mathsf{indisc}}$ at $A$ is defined by
\[ \operatorname {\mathrm{id}}^{X_{\mathsf{indisc}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft [A\webright ]\to \webleft [A\webright ]\right\} . \] -
•
Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{indisc}}\webright )$, the composition map
\[ \circ ^{X_{\mathsf{indisc}}}_{A,B,C} \colon \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}\webleft (B,C\webright ) \times \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}\webleft (A,B\webright ) \to \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}\webleft (A,C\webright ) \]of $X_{\mathsf{disc}}$ at $\webleft (A,B,C\webright )$ is defined by
\[ \webleft (\webleft [B\webright ]\to \webleft [C\webright ]\webright )\circ \webleft (\webleft [A\webright ]\to \webleft [B\webright ]\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\webleft [A\webright ]\to \webleft [C\webright ]\webright ). \]
-
•
-
2.
A category $\mathcal{C}$ is indiscrete if it is equivalent to $X_{\mathsf{indisc}}$ for some set $X$.
- 1Further Terminology: Sometimes called the chaotic category on $X$.