Let $X$ be a set.
-
1.
The indiscrete category on $X$1 is the category $X_{\mathsf{indisc}}$ where
-
•
Objects. We have
\[ \operatorname {\mathrm{Obj}}(X_{\mathsf{indisc}}) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X. \] -
•
Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(X_{\mathsf{indisc}})$, we have
\begin{align*} \operatorname {\mathrm{Hom}}_{X_{\mathsf{disc}}}(A,B) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ [A]\to [B]\right\} \\ & \cong \mathrm{pt}. \end{align*} -
•
Identities. For each $A\in \operatorname {\mathrm{Obj}}(X_{\mathsf{indisc}})$, the unit map
\[ \mathbb {1}^{X_{\mathsf{indisc}}}_{A} \colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}(A,A) \]of $X_{\mathsf{indisc}}$ at $A$ is defined by
\[ \operatorname {\mathrm{id}}^{X_{\mathsf{indisc}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ [A]\to [A]\right\} . \] -
•
Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}(X_{\mathsf{indisc}})$, the composition map
\[ \circ ^{X_{\mathsf{indisc}}}_{A,B,C} \colon \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}(B,C) \times \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}(A,B) \to \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}(A,C) \]of $X_{\mathsf{disc}}$ at $(A,B,C)$ is defined by
\[ ([B]\to [C])\circ ([A]\to [B]) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}([A]\to [C]). \]
-
•