11.3.4 Indiscrete Categories

    Let $X$ be a set.

    1. 1.

      The indiscrete category on $X$1 is the category $X_{\mathsf{indisc}}$ where

      • Objects. We have

        \[ \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{indisc}}\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X. \]
      • Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{indisc}}\webright )$, we have

        \begin{align*} \operatorname {\mathrm{Hom}}_{X_{\mathsf{disc}}}\webleft (A,B\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft [A\webright ]\to \webleft [B\webright ]\right\} \\ & \cong \mathrm{pt}. \end{align*}
      • Identities. For each $A\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{indisc}}\webright )$, the unit map

        \[ \mathbb {1}^{X_{\mathsf{indisc}}}_{A} \colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}\webleft (A,A\webright ) \]

        of $X_{\mathsf{indisc}}$ at $A$ is defined by

        \[ \operatorname {\mathrm{id}}^{X_{\mathsf{indisc}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft [A\webright ]\to \webleft [A\webright ]\right\} . \]
      • Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{indisc}}\webright )$, the composition map

        \[ \circ ^{X_{\mathsf{indisc}}}_{A,B,C} \colon \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}\webleft (B,C\webright ) \times \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}\webleft (A,B\webright ) \to \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}\webleft (A,C\webright ) \]

        of $X_{\mathsf{disc}}$ at $\webleft (A,B,C\webright )$ is defined by

        \[ \webleft (\webleft [B\webright ]\to \webleft [C\webright ]\webright )\circ \webleft (\webleft [A\webright ]\to \webleft [B\webright ]\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\webleft [A\webright ]\to \webleft [C\webright ]\webright ). \]
  • 2.

    A category $\mathcal{C}$ is indiscrete if it is equivalent to $X_{\mathsf{indisc}}$ for some set $X$.


    1. 1Further Terminology: Sometimes called the chaotic category on $X$.

    Let $X$ be a set.

    1. 1.

      Functoriality. The assignment $X\mapsto X_{\mathsf{indisc}}$ defines a functor

      \[ \webleft (-\webright )_{\mathsf{indisc}} \colon \mathsf{Sets}\to \mathsf{Cats}. \]
    2. 2.

      Adjointness. We have a quadruple adjunction

    3. 3.

      Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure

      \[ \webleft (\webleft (-\webright )_{\mathsf{indisc}},\webleft (-\webright )^{\times }_{\mathsf{indisc}},\webleft (-\webright )^{\times }_{\mathsf{indisc}|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\mathrm{pt}\webright ) \to \webleft (\mathsf{Cats},\times ,\mathsf{pt}\webright ), \]

      being equipped with isomorphisms

      \[ \begin{gathered} \webleft (-\webright )^{\times }_{\mathsf{indisc}|X,Y} \colon X_{\mathsf{indisc}}\times Y_{\mathsf{indisc}} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\webleft (X\times Y\webright )_{\mathsf{indisc}},\\ \webleft (-\webright )^{\times }_{\mathsf{indisc}|\mathbb {1}} \colon \mathsf{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathrm{pt}_{\mathsf{indisc}}, \end{gathered} \]

      natural in $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: