11.3.4 Indiscrete Categories

    Let $X$ be a set.

    1. 1.

      The indiscrete category on $X$1 is the category $X_{\mathsf{indisc}}$ where

      • Objects. We have

        \[ \operatorname {\mathrm{Obj}}(X_{\mathsf{indisc}}) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X. \]
      • Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(X_{\mathsf{indisc}})$, we have

        \begin{align*} \operatorname {\mathrm{Hom}}_{X_{\mathsf{disc}}}(A,B) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ [A]\to [B]\right\} \\ & \cong \mathrm{pt}. \end{align*}
      • Identities. For each $A\in \operatorname {\mathrm{Obj}}(X_{\mathsf{indisc}})$, the unit map

        \[ \mathbb {1}^{X_{\mathsf{indisc}}}_{A} \colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}(A,A) \]

        of $X_{\mathsf{indisc}}$ at $A$ is defined by

        \[ \operatorname {\mathrm{id}}^{X_{\mathsf{indisc}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ [A]\to [A]\right\} . \]
      • Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}(X_{\mathsf{indisc}})$, the composition map

        \[ \circ ^{X_{\mathsf{indisc}}}_{A,B,C} \colon \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}(B,C) \times \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}(A,B) \to \operatorname {\mathrm{Hom}}_{X_{\mathsf{indisc}}}(A,C) \]

        of $X_{\mathsf{disc}}$ at $(A,B,C)$ is defined by

        \[ ([B]\to [C])\circ ([A]\to [B]) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}([A]\to [C]). \]
    2. 2.

      A category $\mathcal{C}$ is indiscrete if it is equivalent to $X_{\mathsf{indisc}}$ for some set $X$.


    1. 1Further Terminology: Sometimes called the chaotic category on $X$.

    Let $X$ be a set.

  • 1.

    Functoriality. The assignment $X\mapsto X_{\mathsf{indisc}}$ defines a functor

    \[ (-)_{\mathsf{indisc}} \colon \mathsf{Sets}\to \mathsf{Cats}. \]
  • 2.

    Adjointness. We have a quadruple adjunction

  • 3.

    Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure

    \[ ((-)_{\mathsf{indisc}},(-)^{\times }_{\mathsf{indisc}},(-)^{\times }_{\mathsf{indisc}|\mathbb {1}}) \colon (\mathsf{Sets},\times ,\mathrm{pt}) \to (\mathsf{Cats},\times ,\mathsf{pt}), \]

    being equipped with isomorphisms

    \[ \begin{gathered} (-)^{\times }_{\mathsf{indisc}|X,Y} \colon X_{\mathsf{indisc}}\times Y_{\mathsf{indisc}} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(X\times Y)_{\mathsf{indisc}},\\ (-)^{\times }_{\mathsf{indisc}|\mathbb {1}} \colon \mathsf{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathrm{pt}_{\mathsf{indisc}}, \end{gathered} \]

    natural in $X,Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: