11.5.4 The Natural Transformation Associated to a Functor

Every functor $F\colon \mathcal{C}\to \mathcal{D}$ defines a natural transformation1

called the natural transformation associated to $F$, consisting of the collection

\[ \left\{ F^{\dagger }_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright ) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \right\} _{\webleft (A,B\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}^{\mathsf{op}}\times \mathcal{C}\webright )} \]

with

\[ F^{\dagger }_{A,B} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}F_{A,B}. \]


  1. 1This is the $1$-categorical version of Chapter 4: Constructions With Sets, Unresolved reference of Unresolved reference.

The naturality condition for $F^{\dagger }$ is the requirement that for each morphism

\[ \webleft (\phi ,\psi \webright ) \colon \webleft (X,Y\webright ) \to \webleft (A,B\webright ) \]

of $\mathcal{C}^{\mathsf{op}}\times \mathcal{C}$, the diagram

acting on elements as
commutes, which follows from the functoriality of $F$.

Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.

  1. 1.

    Interaction With Natural Isomorphisms. The following conditions are equivalent:

    1. (a)

      The natural transformation $F^{\dagger }\colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}\Longrightarrow {\operatorname {\mathrm{Hom}}_{\mathcal{D}}}\circ {\webleft (F^{\mathsf{op}}\times F\webright )}$ associated to $F$ is a natural isomorphism.

    2. (b)

      The functor $F$ is fully faithful.

  2. 2.

    Interaction With Composition. We have an equality of pasting diagrams

    in $\mathsf{Cats}_{\mathsf{2}}$, i.e. we have

    \[ \webleft (G\circ F\webright )^{\dagger }=\webleft (G^{\dagger }\mathbin {\star }\operatorname {\mathrm{id}}_{F^{\mathsf{op}}\times F}\webright )\circ F^{\dagger }. \]
  3. 3.

    Interaction With Identities. We have

    \[ \operatorname {\mathrm{id}}^{\dagger }_{\mathcal{C}}=\operatorname {\mathrm{id}}_{\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (-_{1},-_{2}\webright )}, \]

    i.e. the natural transformation associated to $\operatorname {\mathrm{id}}_{\mathcal{C}}$ is the identity natural transformation of the functor $\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (-_{1},-_{2}\webright )$.

Item 1: Interaction With Natural Isomorphisms
Clear.

Item 2: Interaction With Composition
Clear.

Item 3: Interaction With Identities
Clear.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: