Adjointness. We have an adjunction
witnessed by a bijection of sets
\[ \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{G},\mathcal{D})\cong \operatorname {\mathrm{Hom}}_{\mathsf{Grpd}}(\mathcal{G},\mathsf{Core}(\mathcal{D})), \]
natural in $\mathcal{G}\in \operatorname {\mathrm{Obj}}(\mathsf{Grpd})$ and $\mathcal{D}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, forming, together with the functor $\mathrm{K}_{0}$ of Item 1 of Proposition 11.4.3.1.3, a triple adjunction
witnessed by bijections of sets
\begin{align*} \operatorname {\mathrm{Hom}}_{\mathsf{Grpd}}(\mathrm{K}_{0}(\mathcal{C}),\mathcal{G}) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{C},\mathcal{G}),\\ \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{G},\mathcal{D}) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Grpd}}(\mathcal{G},\mathsf{Core}(\mathcal{D})),\end{align*}
natural in $\mathcal{C},\mathcal{D}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$ and $\mathcal{G}\in \operatorname {\mathrm{Obj}}(\mathsf{Grpd})$.