Adjointness. We have an adjunction
witnessed by a bijection of sets
\[ \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}\webleft (\mathcal{G},\mathcal{D}\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Grpd}}\webleft (\mathcal{G},\mathsf{Core}\webleft (\mathcal{D}\webright )\webright ), \]
natural in $\mathcal{G}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Grpd}\webright )$ and $\mathcal{D}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, forming, together with the functor $\mathrm{K}_{0}$ of Item 1 of Proposition 11.4.3.1.3, a triple adjunction
witnessed by bijections of sets
\begin{align*} \operatorname {\mathrm{Hom}}_{\mathsf{Grpd}}\webleft (\mathrm{K}_{0}\webleft (\mathcal{C}\webright ),\mathcal{G}\webright ) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}\webleft (\mathcal{C},\mathcal{G}\webright ),\\ \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}\webleft (\mathcal{G},\mathcal{D}\webright ) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Grpd}}\webleft (\mathcal{G},\mathsf{Core}\webleft (\mathcal{D}\webright )\webright ),\end{align*}
natural in $\mathcal{C},\mathcal{D}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$ and $\mathcal{G}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Grpd}\webright )$.