11.9.1 Transformations

Let $\mathcal{C}$ and $\mathcal{D}$ be categories and let $F,G\colon \mathcal{C}\rightrightarrows \mathcal{D}$ be functors.

A transformation1 $\smash {\alpha \colon F\Rightarrow G}$ from $F$ to $G$ is a collection

\[ \left\{ \alpha _{A}\colon F\webleft (A\webright )\to G\webleft (A\webright )\right\} _{A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )} \]

of morphisms of $\mathcal{D}$.


  1. 1Further Terminology: Also called an unnatural transformation for emphasis.

We write $\operatorname {\mathrm{Trans}}\webleft (F,G\webright )$ for the set of transformations from $F$ to $G$.

We have an isomorphism

\[ \operatorname {\mathrm{Trans}}\webleft (F,G\webright )\cong \prod _{A\in \mathcal{C}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}\webleft (F_{A},G_{A}\webright ). \]

Clear.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: