11.6.3 Fully Faithful Functors

Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

A functor $F\colon \mathcal{C}\to \mathcal{D}$ is fully faithful if $F$ is full and faithful, i.e. if, for each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the action on morphisms

\[ F_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(F_{A},F_{B}) \]

of $F$ at $(A,B)$ is bijective.

Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.

  1. 1.

    Characterisations. The following conditions are equivalent:

    1. (a)

      The functor $F$ is fully faithful.

    2. (b)

      We have a pullback square

      in $\mathsf{Cats}$.

  2. 2.

    Interaction With Composition. If $F$ and $G$ are fully faithful, then so is $G\circ F$.

  3. 3.

    Conservativity. If $F$ is fully faithful, then $F$ is conservative.

  4. 4.

    Essential Injectivity. If $F$ is fully faithful, then $F$ is essentially injective.

  5. 5.

    Interaction With Co/Limits. If $F$ is fully faithful, then $F$ reflects co/limits.

  6. 6.

    Interaction With Postcomposition. The following conditions are equivalent:

    1. (a)

      The functor $F\colon \mathcal{C}\to \mathcal{D}$ is fully faithful.

    2. (b)

      For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the postcomposition functor

      \[ F_{*} \colon \mathsf{Fun}(\mathcal{X},\mathcal{C}) \to \mathsf{Fun}(\mathcal{X},\mathcal{D}) \]

      is fully faithful.

    3. (c)

      The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a representably fully faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 14: Types of Morphisms in Bicategories, Definition 14.1.3.1.1.

  7. 7.

    Interaction With Precomposition I. If $F$ is fully faithful, then the precomposition functor

    \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

    can fail to be fully faithful.

  8. 8.

    Interaction With Precomposition II. If the precomposition functor

    \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

    is fully faithful, then $F$ can fail to be fully faithful (and in fact it can also fail to be either full or faithful).

  9. 9.

    Interaction With Precomposition III. If $F$ is essentially surjective and full, then the precomposition functor

    \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

    is fully faithful.

  10. 10.

    Interaction With Precomposition IV. The following conditions are equivalent:

    1. (a)

      For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      is fully faithful.

    2. (b)

      The precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathsf{Sets}) \to \mathsf{Fun}(\mathcal{C},\mathsf{Sets}) \]

      is fully faithful.

    3. (c)

      The functor

      \[ \operatorname {\mathrm{Lan}}_{F}\colon \mathsf{Fun}(\mathcal{C},\mathsf{Sets}) \to \mathsf{Fun}(\mathcal{D},\mathsf{Sets}) \]

      is fully faithful.

    4. (d)

      The functor $F$ is a corepresentably fully faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 14: Types of Morphisms in Bicategories, Definition 14.2.3.1.1.

    5. (e)

      The functor $F$ is absolutely dense.

    6. (f)

      The components

      \[ \eta _{G}\colon G\Longrightarrow \operatorname {\mathrm{Ran}}_{F}(G\circ F) \]

      of the unit

      \[ \eta \colon \operatorname {\mathrm{id}}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})}\Longrightarrow \operatorname {\mathrm{Ran}}_{F}\circ F^{*} \]

      of the adjunction $F^{*}\dashv \operatorname {\mathrm{Ran}}_{F}$ are all isomorphisms.

    7. (g)

      The components

      \[ \epsilon _{G}\colon \operatorname {\mathrm{Lan}}_{F}(G\circ F)\Longrightarrow G \]

      of the counit

      \[ \epsilon \colon \operatorname {\mathrm{Lan}}_{F}\circ F^{*}\Longrightarrow \operatorname {\mathrm{id}}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})} \]

      of the adjunction $\operatorname {\mathrm{Lan}}_{F}\dashv F^{*}$ are all isomorphisms.

    8. (h)

      The natural transformation

      \[ \alpha \colon \operatorname {\mathrm{Lan}}_{h_{F}}(h^{F})\Longrightarrow h \]

      with components

      \[ \alpha _{B',B}\colon \int ^{A\in \mathcal{C}}h^{B'}_{F_{A}}\times h^{F_{A}}_{B}\to h^{B'}_{B} \]

      given by

      \[ \alpha _{B',B}([(\phi ,\psi )])=\psi \circ \phi \]

      is a natural isomorphism.

    9. (i)

      For each $B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, there exist:

      • An object $A_{B}$ of $\mathcal{C}$;

      • A morphism $s_{B}\colon B\to F(A_{B})$ of $\mathcal{D}$;

      • A morphism $r_{B}\colon F(A_{B})\to B$ of $\mathcal{D}$;

      satisfying the following conditions:

      1. (i)

        The triple $(F(A_{B}),r_{B},s_{B})$ is a retract of $B$, i.e. we have $r_{B}\circ s_{B}=\operatorname {\mathrm{id}}_{B}$.

      2. (ii)

        For each morphism $f\colon B'\to B$ of $\mathcal{D}$, we have

        \[ [(A_{B},s_{B'},f\circ r_{B'})]=[(A_{B},s_{B}\circ f,r_{B})] \]

        in $\int ^{A\in \mathcal{C}}h^{B'}_{F_{A}}\times h^{F_{A}}_{B}$.

Item 1: Characterisations
Omitted.

Item 2: Interaction With Composition
Since the map

\[ (G\circ F)_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(G_{F_{A}},G_{F_{B}}), \]

defined as the composition

\[ \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B)\xrightarrow {F_{A,B}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}(F_{A},F_{B})\xrightarrow {G_{F(A),F(B)}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}(G_{F_{A}},G_{F_{B}}), \]

is a composition of bijective functions, it follows from Unresolved reference that it is also bijective. Therefore $G\circ F$ is fully faithful.

Item 3: Conservativity
This is a repetition of Item 2 of Proposition 11.6.4.1.2, and is proved there.

Item 4: Essential Injectivity
Omitted.

Item 5: Interaction With Co/Limits
Omitted.

Item 6: Interaction With Postcomposition
This follows from Item 2 of Proposition 11.6.1.1.2 and Unresolved reference of Proposition 11.6.2.1.2.

Item 7: Interaction With Precomposition I
See [Hamcke, Precomposition with a faithful functor] for an example of a fully faithful functor whose precomposition with which fails to be full.

Item 8: Interaction With Precomposition II
See Item 3 of [Lin, If the functor on presheaf categories given by precomposition by F is ff, is F full? faithful?].

Item 9: Interaction With Precomposition III
Omitted, but see for a formalised proof.

Item 10: Interaction With Precomposition IV
We claim Item 10a, Item 10b, Item 10c, Item 10d, Item 10e, Item 10f, Item 10g, Item 10h, and Item 10i are equivalent:

This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: