11.6.3 Fully Faithful Functors

    Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

    A functor $F\colon \mathcal{C}\to \mathcal{D}$ is fully faithful if $F$ is full and faithful, i.e. if, for each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the action on morphisms

    \[ F_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright ) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]

    of $F$ at $\webleft (A,B\webright )$ is bijective.

    Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.

    1. 1.

      Characterisations. The following conditions are equivalent:

      1. (a)

        The functor $F$ is fully faithful.

      2. (b)

        We have a pullback square

        in $\mathsf{Cats}$.

    2. 2.

      Interaction With Composition. If $F$ and $G$ are fully faithful, then so is $G\circ F$.

    3. 3.

      Conservativity. If $F$ is fully faithful, then $F$ is conservative.

    4. 4.

      Essential Injectivity. If $F$ is fully faithful, then $F$ is essentially injective.

    5. 5.

      Interaction With Co/Limits. If $F$ is fully faithful, then $F$ reflects co/limits.

    6. 6.

      Interaction With Postcomposition. The following conditions are equivalent:

      1. (a)

        The functor $F\colon \mathcal{C}\to \mathcal{D}$ is fully faithful.

      2. (b)

        For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor

        \[ F_{*} \colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright ) \to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]

        is fully faithful.

      3. (c)

        The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a representably fully faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 13: Types of Morphisms in Bicategories, Definition 13.1.3.1.1.

    7. 7.

      Interaction With Precomposition I. If $F$ is fully faithful, then the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

      can fail to be fully faithful.

    8. 8.

      Interaction With Precomposition II. If the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

      is fully faithful, then $F$ can fail to be fully faithful (and in fact it can also fail to be either full or faithful).

    9. 9.

      Interaction With Precomposition III. If $F$ is essentially surjective and full, then the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

      is fully faithful.

    10. 10.

      Interaction With Precomposition IV. The following conditions are equivalent:

      1. (a)

        For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the precomposition functor

        \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

        is fully faithful.

  • (b)

    The precomposition functor

    \[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathsf{Sets}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathsf{Sets}\webright ) \]

    is fully faithful.

  • (c)

    The functor

    \[ \operatorname {\mathrm{Lan}}_{F}\colon \mathsf{Fun}\webleft (\mathcal{C},\mathsf{Sets}\webright ) \to \mathsf{Fun}\webleft (\mathcal{D},\mathsf{Sets}\webright ) \]

    is fully faithful.

  • (d)

    The functor $F$ is a corepresentably fully faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 13: Types of Morphisms in Bicategories, Definition 13.2.3.1.1.

  • (e)

    The functor $F$ is absolutely dense.

  • (f)

    The components

    \[ \eta _{G}\colon G\Longrightarrow \operatorname {\mathrm{Ran}}_{F}\webleft (G\circ F\webright ) \]

    of the unit

    \[ \eta \colon \operatorname {\mathrm{id}}_{\mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )}\Longrightarrow \operatorname {\mathrm{Ran}}_{F}\circ F^{*} \]

    of the adjunction $F^{*}\dashv \operatorname {\mathrm{Ran}}_{F}$ are all isomorphisms.

  • (g)

    The components

    \[ \epsilon _{G}\colon \operatorname {\mathrm{Lan}}_{F}\webleft (G\circ F\webright )\Longrightarrow G \]

    of the counit

    \[ \epsilon \colon \operatorname {\mathrm{Lan}}_{F}\circ F^{*}\Longrightarrow \operatorname {\mathrm{id}}_{\mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )} \]

    of the adjunction $\operatorname {\mathrm{Lan}}_{F}\dashv F^{*}$ are all isomorphisms.

  • (h)

    The natural transformation

    \[ \alpha \colon \operatorname {\mathrm{Lan}}_{h_{F}}\webleft (h^{F}\webright )\Longrightarrow h \]

    with components

    \[ \alpha _{B',B}\colon \int ^{A\in \mathcal{C}}h^{B'}_{F_{A}}\times h^{F_{A}}_{B}\to h^{B'}_{B} \]

    given by

    \[ \alpha _{B',B}\webleft (\webleft [\webleft (\phi ,\psi \webright )\webright ]\webright )=\psi \circ \phi \]

    is a natural isomorphism.

  • (i)

    For each $B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{D}\webright )$, there exist:

    • An object $A_{B}$ of $\mathcal{C}$;

    • A morphism $s_{B}\colon B\to F\webleft (A_{B}\webright )$ of $\mathcal{D}$;

    • A morphism $r_{B}\colon F\webleft (A_{B}\webright )\to B$ of $\mathcal{D}$;

    satisfying the following conditions:

    1. (i)

      The triple $\webleft (F\webleft (A_{B}\webright ),r_{B},s_{B}\webright )$ is a retract of $B$, i.e. we have $r_{B}\circ s_{B}=\operatorname {\mathrm{id}}_{B}$.

    2. (ii)

      For each morphism $f\colon B'\to B$ of $\mathcal{D}$, we have

      \[ \webleft [\webleft (A_{B},s_{B'},f\circ r_{B'}\webright )\webright ]=\webleft [\webleft (A_{B},s_{B}\circ f,r_{B}\webright )\webright ] \]

      in $\int ^{A\in \mathcal{C}}h^{B'}_{F_{A}}\times h^{F_{A}}_{B}$.

  • Item 1: Characterisations
    Omitted.

    Item 2: Interaction With Composition
    Since the map

    \[ \webleft (G\circ F\webright )_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright ) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}\webleft (G_{F_{A}},G_{F_{B}}\webright ), \]

    defined as the composition

    \[ \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright )\xrightarrow {F_{A,B}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright )\xrightarrow {G_{F\webleft (A\webright ),F\webleft (B\webright )}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}\webleft (G_{F_{A}},G_{F_{B}}\webright ), \]

    is a composition of bijective functions, it follows from Unresolved reference that it is also bijective. Therefore $G\circ F$ is fully faithful.

    Item 3: Conservativity
    This is a repetition of Item 2 of Proposition 11.6.4.1.2, and is proved there.

    Item 4: Essential Injectivity
    Omitted.

    Item 5: Interaction With Co/Limits
    Omitted.

    Item 6: Interaction With Postcomposition
    This follows from Item 2 of Proposition 11.6.1.1.2 and Unresolved reference of Proposition 11.6.2.1.2.

    Item 7: Interaction With Precomposition I
    See [Hamcke, Precomposition with a faithful functor] for an example of a fully faithful functor whose precomposition with which fails to be full.

    Item 8: Interaction With Precomposition II
    See Item 3 of [Lin, If the functor on presheaf categories given by precomposition by F is ff, is F full? faithful?].

    Item 9: Interaction With Precomposition III
    Omitted, but see for a formalised proof.

    Item 10: Interaction With Precomposition IV
    We claim Item 10a, Item 10b, Item 10c, Item 10d, Item 10e, Item 10f, Item 10g, Item 10h, and Item 10i are equivalent:

    This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: