11.6.3 Fully Faithful Functors

    Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

    A functor $F\colon \mathcal{C}\to \mathcal{D}$ is fully faithful if $F$ is full and faithful, i.e. if, for each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the action on morphisms

    \[ F_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(F_{A},F_{B}) \]

    of $F$ at $(A,B)$ is bijective.

    Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.

    1. 1.

      Characterisations. The following conditions are equivalent:

      1. (a)

        The functor $F$ is fully faithful.

      2. (b)

        We have a pullback square

        in $\mathsf{Cats}$.

    2. 2.

      Interaction With Composition. If $F$ and $G$ are fully faithful, then so is $G\circ F$.

    3. 3.

      Conservativity. If $F$ is fully faithful, then $F$ is conservative.

    4. 4.

      Essential Injectivity. If $F$ is fully faithful, then $F$ is essentially injective.

    5. 5.

      Interaction With Co/Limits. If $F$ is fully faithful, then $F$ reflects co/limits.

    6. 6.

      Interaction With Postcomposition. The following conditions are equivalent:

      1. (a)

        The functor $F\colon \mathcal{C}\to \mathcal{D}$ is fully faithful.

      2. (b)

        For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the postcomposition functor

        \[ F_{*} \colon \mathsf{Fun}(\mathcal{X},\mathcal{C}) \to \mathsf{Fun}(\mathcal{X},\mathcal{D}) \]

        is fully faithful.

      3. (c)

        The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a representably fully faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 14: Types of Morphisms in Bicategories, Definition 14.1.3.1.1.

    7. 7.

      Interaction With Precomposition I. If $F$ is fully faithful, then the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      can fail to be fully faithful.

    8. 8.

      Interaction With Precomposition II. If the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      is fully faithful, then $F$ can fail to be fully faithful (and in fact it can also fail to be either full or faithful).

    9. 9.

      Interaction With Precomposition III. If $F$ is essentially surjective and full, then the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      is fully faithful.

    10. 10.

      Interaction With Precomposition IV. The following conditions are equivalent:

      1. (a)

        For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

        \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

        is fully faithful.

      2. (b)

        The precomposition functor

        \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathsf{Sets}) \to \mathsf{Fun}(\mathcal{C},\mathsf{Sets}) \]

        is fully faithful.

      3. (c)

        The functor

        \[ \operatorname {\mathrm{Lan}}_{F}\colon \mathsf{Fun}(\mathcal{C},\mathsf{Sets}) \to \mathsf{Fun}(\mathcal{D},\mathsf{Sets}) \]

        is fully faithful.

      4. (d)

        The functor $F$ is a corepresentably fully faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 14: Types of Morphisms in Bicategories, Definition 14.2.3.1.1.

      5. (e)

        The functor $F$ is absolutely dense.

      6. (f)

        The components

        \[ \eta _{G}\colon G\Longrightarrow \operatorname {\mathrm{Ran}}_{F}(G\circ F) \]

        of the unit

        \[ \eta \colon \operatorname {\mathrm{id}}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})}\Longrightarrow \operatorname {\mathrm{Ran}}_{F}\circ F^{*} \]

        of the adjunction $F^{*}\dashv \operatorname {\mathrm{Ran}}_{F}$ are all isomorphisms.

      7. (g)

        The components

        \[ \epsilon _{G}\colon \operatorname {\mathrm{Lan}}_{F}(G\circ F)\Longrightarrow G \]

        of the counit

        \[ \epsilon \colon \operatorname {\mathrm{Lan}}_{F}\circ F^{*}\Longrightarrow \operatorname {\mathrm{id}}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})} \]

        of the adjunction $\operatorname {\mathrm{Lan}}_{F}\dashv F^{*}$ are all isomorphisms.

      8. (h)

        The natural transformation

        \[ \alpha \colon \operatorname {\mathrm{Lan}}_{h_{F}}(h^{F})\Longrightarrow h \]

        with components

        \[ \alpha _{B',B}\colon \int ^{A\in \mathcal{C}}h^{B'}_{F_{A}}\times h^{F_{A}}_{B}\to h^{B'}_{B} \]

        given by

        \[ \alpha _{B',B}([(\phi ,\psi )])=\psi \circ \phi \]

        is a natural isomorphism.

      9. (i)

        For each $B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, there exist:

        • An object $A_{B}$ of $\mathcal{C}$;

        • A morphism $s_{B}\colon B\to F(A_{B})$ of $\mathcal{D}$;

        • A morphism $r_{B}\colon F(A_{B})\to B$ of $\mathcal{D}$;

        satisfying the following conditions:

        1. (i)

          The triple $(F(A_{B}),r_{B},s_{B})$ is a retract of $B$, i.e. we have $r_{B}\circ s_{B}=\operatorname {\mathrm{id}}_{B}$.

  • (ii)

    For each morphism $f\colon B'\to B$ of $\mathcal{D}$, we have

    \[ [(A_{B},s_{B'},f\circ r_{B'})]=[(A_{B},s_{B}\circ f,r_{B})] \]

    in $\int ^{A\in \mathcal{C}}h^{B'}_{F_{A}}\times h^{F_{A}}_{B}$.

  • Item 1: Characterisations
    Omitted.

    Item 2: Interaction With Composition
    Since the map

    \[ (G\circ F)_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(G_{F_{A}},G_{F_{B}}), \]

    defined as the composition

    \[ \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B)\xrightarrow {F_{A,B}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}(F_{A},F_{B})\xrightarrow {G_{F(A),F(B)}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}(G_{F_{A}},G_{F_{B}}), \]

    is a composition of bijective functions, it follows from Unresolved reference that it is also bijective. Therefore $G\circ F$ is fully faithful.

    Item 3: Conservativity
    This is a repetition of Item 2 of Proposition 11.6.4.1.2, and is proved there.

    Item 4: Essential Injectivity
    Omitted.

    Item 5: Interaction With Co/Limits
    Omitted.

    Item 6: Interaction With Postcomposition
    This follows from Item 2 of Proposition 11.6.1.1.2 and Unresolved reference of Proposition 11.6.2.1.2.

    Item 7: Interaction With Precomposition I
    See [Hamcke, Precomposition with a faithful functor] for an example of a fully faithful functor whose precomposition with which fails to be full.

    Item 8: Interaction With Precomposition II
    See Item 3 of [Lin, If the functor on presheaf categories given by precomposition by F is ff, is F full? faithful?].

    Item 9: Interaction With Precomposition III
    Omitted, but see for a formalised proof.

    Item 10: Interaction With Precomposition IV
    We claim Item 10a, Item 10b, Item 10c, Item 10d, Item 10e, Item 10f, Item 10g, Item 10h, and Item 10i are equivalent:

    This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: