11.4.3 The Groupoid Completion of a Category

Let $\mathcal{C}$ be a category.

The groupoid completion of $\mathcal{C}$1 is the pair $(\mathrm{K}_{0}(\mathcal{C}),\iota _{\mathcal{C}})$ consisting of

  • A groupoid $\mathrm{K}_{0}(\mathcal{C})$;

  • A functor $\iota _{\mathcal{C}}\colon \mathcal{C}\to \mathrm{K}_{0}(\mathcal{C})$;

satisfying the following universal property:2

  • Given another such pair $(\mathcal{G},i)$, there exists a unique functor $\mathrm{K}_{0}(\mathcal{C})\overset {\exists !}{\to }\mathcal{G}$ making the diagram

    commute.


  1. 1Further Terminology: Also called the Grothendieck groupoid of $\mathcal{C}$ or the Grothendieck groupoid completion of $\mathcal{C}$.
  2. 2See Item 5 of Proposition 11.4.3.1.3 for an explicit construction.

Concretely, the groupoid completion of $\mathcal{C}$ is the Gabriel–Zisman localisation $\operatorname {\mathrm{Mor}}(\mathcal{C})^{-1}\mathcal{C}$ of $\mathcal{C}$ at the set $\operatorname {\mathrm{Mor}}(\mathcal{C})$ of all morphisms of $\mathcal{C}$; see Unresolved reference, Unresolved reference.

(To be expanded upon later on.)

Omitted.

Let $\mathcal{C}$ be a category.

  1. 1.

    Functoriality. The assignment $\mathcal{C}\mapsto \mathrm{K}_{0}(\mathcal{C})$ defines a functor

    \[ \mathrm{K}_{0} \colon \mathsf{Cats}\to \mathsf{Grpd}. \]
  2. 2.

    2-Functoriality. The assignment $\mathcal{C}\mapsto \mathrm{K}_{0}(\mathcal{C})$ defines a 2-functor

    \[ \mathrm{K}_{0} \colon \mathsf{Cats}_{\mathsf{2}}\to \mathsf{Grpd}_{\mathsf{2}}. \]
  3. 3.

    Adjointness. We have an adjunction

    witnessed by a bijection of sets

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{Grpd}}(\mathrm{K}_{0}(\mathcal{C}),\mathcal{G})\cong \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{C},\mathcal{G}), \]

    natural in $\mathcal{C}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$ and $\mathcal{G}\in \operatorname {\mathrm{Obj}}(\mathsf{Grpd})$, forming, together with the functor $\mathsf{Core}$ of Item 1 of Proposition 11.4.4.1.4, a triple adjunction

    witnessed by bijections of sets

    \begin{align*} \operatorname {\mathrm{Hom}}_{\mathsf{Grpd}}(\mathrm{K}_{0}(\mathcal{C}),\mathcal{G}) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{C},\mathcal{G}),\\ \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{G},\mathcal{D}) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Grpd}}(\mathcal{G},\mathsf{Core}(\mathcal{D})),\end{align*}

    natural in $\mathcal{C},\mathcal{D}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$ and $\mathcal{G}\in \operatorname {\mathrm{Obj}}(\mathsf{Grpd})$.

  4. 4.

    2-Adjointness. We have a 2-adjunction

    witnessed by an isomorphism of categories

    \[ \mathsf{Fun}(\mathrm{K}_{0}(\mathcal{C}),\mathcal{G})\cong \mathsf{Fun}(\mathcal{C},\mathcal{G}), \]

    natural in $\mathcal{C}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$ and $\mathcal{G}\in \operatorname {\mathrm{Obj}}(\mathsf{Grpd})$, forming, together with the 2-functor $\mathsf{Core}$ of Item 2 of Proposition 11.4.4.1.4, a triple 2-adjunction

    witnessed by isomorphisms of categories

    \begin{align*} \mathsf{Fun}(\mathrm{K}_{0}(\mathcal{C}),\mathcal{G}) & \cong \mathsf{Fun}(\mathcal{C},\mathcal{G}),\\ \mathsf{Fun}(\mathcal{G},\mathcal{D}) & \cong \mathsf{Fun}(\mathcal{G},\mathsf{Core}(\mathcal{D})),\end{align*}

    natural in $\mathcal{C},\mathcal{D}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$ and $\mathcal{G}\in \operatorname {\mathrm{Obj}}(\mathsf{Grpd})$.

  5. 5.

    Interaction With Classifying Spaces. We have an isomorphism of groupoids

    \[ \mathrm{K}_{0}(\mathcal{C}) \cong \Pi _{\leq 1}(\left\lvert \mathrm{N}_{\bullet }(\mathcal{C})\right\rvert ), \]

    natural in $\mathcal{C}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$; i.e. the diagram

    commutes up to natural isomorphism.

  6. 6.

    Symmetric Strong Monoidality With Respect to Coproducts. The groupoid completion functor of Item 1 has a symmetric strong monoidal structure

    \[ (\mathrm{K}_{0},\mathrm{K}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0},\mathrm{K}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0|\mathbb {1}}) \colon (\mathsf{Cats},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\text{Ø}_{\mathsf{cat}}) \to (\mathsf{Grpd},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\text{Ø}_{\mathsf{cat}}) \]

    being equipped with isomorphisms

    \[ \begin{gathered} \mathrm{K}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0|\mathcal{C},\mathcal{D}} \colon \mathrm{K}_{0}(\mathcal{C})\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathrm{K}_{0}(\mathcal{D}) \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathrm{K}_{0}(\mathcal{C}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathcal{D}),\\ \mathrm{K}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0|\mathbb {1}} \colon \text{Ø}_{\mathsf{cat}}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathrm{K}_{0}(\text{Ø}_{\mathsf{cat}}), \end{gathered} \]

    natural in $\mathcal{C},\mathcal{D}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$.

  7. 7.

    Symmetric Strong Monoidality With Respect to Products. The groupoid completion functor of Item 1 has a symmetric strong monoidal structure

    \[ (\mathrm{K}_{0},\mathrm{K}^{\times }_{0},\mathrm{K}^{\times }_{0|\mathbb {1}}) \colon (\mathsf{Cats},\times ,\mathsf{pt}) \to (\mathsf{Grpd},\times ,\mathsf{pt}) \]

    being equipped with isomorphisms

    \[ \begin{gathered} \mathrm{K}^{\times }_{0|\mathcal{C},\mathcal{D}} \colon \mathrm{K}_{0}(\mathcal{C})\times \mathrm{K}_{0}(\mathcal{D}) \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathrm{K}_{0}(\mathcal{C}\times \mathcal{D}),\\ \mathrm{K}^{\times }_{0|\mathbb {1}} \colon \mathsf{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathrm{K}_{0}(\mathsf{pt}), \end{gathered} \]

    natural in $\mathcal{C},\mathcal{D}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$.

Item 1: Functoriality
Omitted.

Item 2: 2-Functoriality
Omitted.

Item 3: Adjointness
Omitted.

Item 4: 2-Adjointness
Omitted.

Item 5: Interaction With Classifying Spaces
See Corollary 18.33 of .

Item 6: Symmetric Strong Monoidality With Respect to Coproducts
Omitted.

Item 7: Symmetric Strong Monoidality With Respect to Products
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: