The groupoid completion of $\mathcal{C}$1 is the pair $(\mathrm{K}_{0}(\mathcal{C}),\iota _{\mathcal{C}})$ consisting of
-
•
A groupoid $\mathrm{K}_{0}(\mathcal{C})$;
-
•
A functor $\iota _{\mathcal{C}}\colon \mathcal{C}\to \mathrm{K}_{0}(\mathcal{C})$;
satisfying the following universal property:2
-
•
Given another such pair $(\mathcal{G},i)$, there exists a unique functor $\mathrm{K}_{0}(\mathcal{C})\overset {\exists !}{\to }\mathcal{G}$ making the diagram
commute.
- 1Further Terminology: Also called the Grothendieck groupoid of $\mathcal{C}$ or the Grothendieck groupoid completion of $\mathcal{C}$.
- 2See Item 5 of Proposition 11.4.3.1.3 for an explicit construction.