The category of functors from $\mathcal{C}$ to $\mathcal{D}$1 is the category $\mathsf{Fun}(\mathcal{C},\mathcal{D})$2 where
-
•
Objects. The objects of $\mathsf{Fun}(\mathcal{C},\mathcal{D})$ are functors from $\mathcal{C}$ to $\mathcal{D}$.
-
•
Morphisms. For each $F,G\in \operatorname {\mathrm{Obj}}(\mathsf{Fun}(\mathcal{C},\mathcal{D}))$, we have
\[ \operatorname {\mathrm{Hom}}_{\mathsf{Fun}(\mathcal{C},\mathcal{D})}(F,G) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{Nat}}(F,G). \] -
•
Identities. For each $F\in \operatorname {\mathrm{Obj}}(\mathsf{Fun}(\mathcal{C},\mathcal{D}))$, the unit map
\[ \mathbb {1}^{\mathsf{Fun}(\mathcal{C},\mathcal{D})}_{F} \colon \mathrm{pt}\to \operatorname {\mathrm{Nat}}(F,F) \]of $\mathsf{Fun}(\mathcal{C},\mathcal{D})$ at $F$ is given by
\[ \operatorname {\mathrm{id}}^{\mathsf{Fun}(\mathcal{C},\mathcal{D})}_{F} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{F}, \]where $\operatorname {\mathrm{id}}_{F}\colon F\Longrightarrow F$ is the identity natural transformation of $F$ of Example 11.9.3.1.1.
-
•
Composition. For each $F,G,H\in \operatorname {\mathrm{Obj}}(\mathsf{Fun}(\mathcal{C},\mathcal{D}))$, the composition map
\[ \circ ^{\mathsf{Fun}(\mathcal{C},\mathcal{D})}_{F,G,H} \colon \operatorname {\mathrm{Nat}}(G,H) \times \operatorname {\mathrm{Nat}}(F,G) \to \operatorname {\mathrm{Nat}}(F,H) \]of $\mathsf{Fun}(\mathcal{C},\mathcal{D})$ at $(F,G,H)$ is given by
\[ \beta \mathbin {{\circ }^{\mathsf{Fun}(\mathcal{C},\mathcal{D})}_{F,G,H}}\alpha \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\beta \circ \alpha , \]where $\beta \circ \alpha $ is the vertical composition of $\alpha $ and $\beta $ of Item 1 of Proposition 11.9.4.1.2.
- 1Further Terminology: Also called the functor category $\mathsf{Fun}(\mathcal{C},\mathcal{D})$.
- 2Further Notation: Also written $\mathcal{D}^{\mathcal{C}}$ and $[\mathcal{C},\mathcal{D}]$.