11.10.1 Functor Categories

    Let $\mathcal{C}$ be a category and $\mathcal{D}$ be a small category.

    The category of functors from $\mathcal{C}$ to $\mathcal{D}$1 is the category $\mathsf{Fun}(\mathcal{C},\mathcal{D})$2 where

    • Objects. The objects of $\mathsf{Fun}(\mathcal{C},\mathcal{D})$ are functors from $\mathcal{C}$ to $\mathcal{D}$.

    • Morphisms. For each $F,G\in \operatorname {\mathrm{Obj}}(\mathsf{Fun}(\mathcal{C},\mathcal{D}))$, we have

      \[ \operatorname {\mathrm{Hom}}_{\mathsf{Fun}(\mathcal{C},\mathcal{D})}(F,G) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{Nat}}(F,G). \]
    • Identities. For each $F\in \operatorname {\mathrm{Obj}}(\mathsf{Fun}(\mathcal{C},\mathcal{D}))$, the unit map

      \[ \mathbb {1}^{\mathsf{Fun}(\mathcal{C},\mathcal{D})}_{F} \colon \mathrm{pt}\to \operatorname {\mathrm{Nat}}(F,F) \]

      of $\mathsf{Fun}(\mathcal{C},\mathcal{D})$ at $F$ is given by

      \[ \operatorname {\mathrm{id}}^{\mathsf{Fun}(\mathcal{C},\mathcal{D})}_{F} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{F}, \]

      where $\operatorname {\mathrm{id}}_{F}\colon F\Longrightarrow F$ is the identity natural transformation of $F$ of Example 11.9.3.1.1.

    • Composition. For each $F,G,H\in \operatorname {\mathrm{Obj}}(\mathsf{Fun}(\mathcal{C},\mathcal{D}))$, the composition map

      \[ \circ ^{\mathsf{Fun}(\mathcal{C},\mathcal{D})}_{F,G,H} \colon \operatorname {\mathrm{Nat}}(G,H) \times \operatorname {\mathrm{Nat}}(F,G) \to \operatorname {\mathrm{Nat}}(F,H) \]

      of $\mathsf{Fun}(\mathcal{C},\mathcal{D})$ at $(F,G,H)$ is given by

      \[ \beta \mathbin {{\circ }^{\mathsf{Fun}(\mathcal{C},\mathcal{D})}_{F,G,H}}\alpha \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\beta \circ \alpha , \]

      where $\beta \circ \alpha $ is the vertical composition of $\alpha $ and $\beta $ of Item 1 of Proposition 11.9.4.1.2.


    1. 1Further Terminology: Also called the functor category $\mathsf{Fun}(\mathcal{C},\mathcal{D})$.
    2. 2Further Notation: Also written $\mathcal{D}^{\mathcal{C}}$ and $[\mathcal{C},\mathcal{D}]$.

    Let $\mathcal{C}$ and $\mathcal{D}$ be categories and let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

    1. 1.

      Functoriality. The assignments $\mathcal{C},\mathcal{D},(\mathcal{C},\mathcal{D})\mapsto \mathsf{Fun}(\mathcal{C},\mathcal{D})$ define functors

      \[ \begin{array}{ccc} \mathsf{Fun}(\mathcal{C},-)\colon \mkern -15mu & \mathsf{Cats} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats},\\ \mathsf{Fun}(-,\mathcal{D})\colon \mkern -15mu & \mathsf{Cats}\mathrlap {{}^{\mathsf{op}}} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats},\\ \mathsf{Fun}(-_{1},-_{2})\colon \mkern -15mu & \mathsf{Cats}^{\mathsf{op}}\times \mathsf{Cats} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats}. \end{array} \]
    2. 2.

      2-Functoriality. The assignments $\mathcal{C},\mathcal{D},(\mathcal{C},\mathcal{D})\mapsto \mathsf{Fun}(\mathcal{C},\mathcal{D})$ define 2-functors

      \[ \begin{array}{ccc} \mathsf{Fun}(\mathcal{C},-)\colon \mkern -15mu & \mathsf{Cats}_{\mathsf{2}} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats}_{\mathsf{2}},\\ \mathsf{Fun}(-,\mathcal{D})\colon \mkern -15mu & \mathsf{Cats}_{\mathsf{2}}^{\mathrlap {\mathsf{op}}} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats}_{\mathsf{2}},\\ \mathsf{Fun}(-_{1},-_{2})\colon \mkern -15mu & \mathsf{Cats}_{\mathsf{2}}^{\mathsf{op}}\times \mathsf{Cats}_{\mathsf{2}} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Cats}_{\mathsf{2}}. \end{array} \]
    3. 3.

      Adjointness. We have adjunctions

      witnessed by bijections of sets

      \begin{align*} \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{C}\times \mathcal{D},\mathcal{E}) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{D},\mathsf{Fun}(\mathcal{C},\mathcal{E})),\\ \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{C}\times \mathcal{D},\mathcal{E}) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{C},\mathsf{Fun}(\mathcal{D},\mathcal{E})), \end{align*}

      natural in $\mathcal{C},\mathcal{D},\mathcal{E}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$.

  • 4.

    2-Adjointness. We have 2-adjunctions

    witnessed by isomorphisms of categories

    \begin{align*} \mathsf{Fun}(\mathcal{C}\times \mathcal{D},\mathcal{E}) & \cong \mathsf{Fun}(\mathcal{D},\mathsf{Fun}(\mathcal{C},\mathcal{E})),\\ \mathsf{Fun}(\mathcal{C}\times \mathcal{D},\mathcal{E}) & \cong \mathsf{Fun}(\mathcal{C},\mathsf{Fun}(\mathcal{D},\mathcal{E})), \end{align*}

    natural in $\mathcal{C},\mathcal{D},\mathcal{E}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats}_{\mathsf{2}})$.

  • 5.

    Interaction With Punctual Categories. We have a canonical isomorphism of categories

    \[ \mathsf{Fun}(\mathsf{pt},\mathcal{C}) \cong \mathcal{C}, \]

    natural in $\mathcal{C}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$.

  • 6.

    Objectwise Computation of Co/Limits. Let

    \[ D \colon \mathcal{I} \to \mathsf{Fun}(\mathcal{C},\mathcal{D}) \]

    be a diagram in $\mathsf{Fun}(\mathcal{C},\mathcal{D})$. We have isomorphisms

    \begin{align*} \operatorname*{\operatorname {\mathrm{lim}}}(D)_{A} & \cong \operatorname*{\operatorname {\mathrm{lim}}}_{i\in \mathcal{I}}(D_{i}(A)),\\ \operatorname*{\operatorname {\mathrm{colim}}}(D)_{A} & \cong \operatorname*{\operatorname {\mathrm{colim}}}_{i\in \mathcal{I}}(D_{i}(A)), \end{align*}

    naturally in $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$.

  • 7.

    Interaction With Co/Completeness. If $\mathcal{E}$ is co/complete, then so is $\mathsf{Fun}(\mathcal{C},\mathcal{E})$.

  • 8.

    Monomorphisms and Epimorphisms. Let $\alpha \colon F\Longrightarrow G$ be a morphism of $\mathsf{Fun}(\mathcal{C},\mathcal{D})$. The following conditions are equivalent:

    1. (a)

      The natural transformation

      \[ \alpha \colon F \Longrightarrow G \]

      is a monomorphism (resp. epimorphism) in $\mathsf{Fun}(\mathcal{C},\mathcal{D})$.

    2. (b)

      For each $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the morphism

      \[ \alpha _{A} \colon F_{A} \to G_{A} \]

      is a monomorphism (resp. epimorphism) in $\mathcal{D}$.

  • Item 1: Functoriality
    Omitted.

    Item 2: 2-Functoriality
    Omitted.

    Item 3: Adjointness
    Omitted.

    Item 4: 2-Adjointness
    Omitted.

    Item 5: Interaction With Punctual Categories
    Omitted.

    Item 6: Objectwise Computation of Co/Limits
    Omitted.

    Item 7: Interaction With Co/Completeness
    This follows from Unresolved reference.

    Item 8: Monomorphisms and Epimorphisms
    Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: