A functor $F\colon \mathcal{C}\to \mathcal{D}$ is dominant if every object of $\mathcal{D}$ is a retract of some object in $\mathrm{Im}(F)$, i.e.:
- (★) For each $B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, there exist:
-
•
An object $A$ of $\mathcal{C}$;
-
•
A morphism $r\colon F(A)\to B$ of $\mathcal{D}$;
-
•
A morphism $s\colon B\to F(A)$ of $\mathcal{D}$;