11.7.1 Dominant Functors

    Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

    A functor $F\colon \mathcal{C}\to \mathcal{D}$ is dominant if every object of $\mathcal{D}$ is a retract of some object in $\mathrm{Im}(F)$, i.e.:

    • (★)
    • For each $B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, there exist:
      • An object $A$ of $\mathcal{C}$;

      • A morphism $r\colon F(A)\to B$ of $\mathcal{D}$;

      • A morphism $s\colon B\to F(A)$ of $\mathcal{D}$;

      such that we have

    Let $F,G\colon \mathcal{C}\rightrightarrows \mathcal{D}$ be functors and let $I\colon \mathcal{X}\to \mathcal{C}$ be a functor.

    1. 1.

      Interaction With Right Whiskering. If $I$ is full and dominant, then the map

      \[ -\mathbin {\star }\operatorname {\mathrm{id}}_{I} \colon \operatorname {\mathrm{Nat}}(F,G)\to \operatorname {\mathrm{Nat}}(F\circ I,G\circ I) \]

      is a bijection.

    2. 2.

      Interaction With Adjunctions. Let $(F,G)\colon \mathcal{C}\mathbin {\rightleftarrows }\mathcal{D}$ be an adjunction.

  • (a)

    If $F$ is dominant, then $G$ is faithful.

  • (b)

    The following conditions are equivalent:

    1. (i)

      The functor $G$ is full.

    2. (ii)

      The restriction

      \[ \left.G\right\vert _{\mathrm{Im}_{F}}\colon \mathrm{Im}(F)\to \mathcal{C} \]

      of $G$ to $\mathrm{Im}(F)$ is full.

  • Is there a characterisation of functors $F\colon \mathcal{C}\to \mathcal{D}$ such that:

    1. 1.

      For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

      \[ F^{*}\colon \mathsf{Fun}(\mathcal{D},\mathcal{X})\to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      is dominant?

    2. 2.

      For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the postcomposition functor

      \[ F_{*}\colon \mathsf{Fun}(\mathcal{X},\mathcal{C})\to \mathsf{Fun}(\mathcal{X},\mathcal{D}) \]

      is dominant?

    This question also appears as [Emily, Characterisations of functors $F$ such that $F^*$ or $F_*$ is [property], e.g. faithful, conservative, etc].


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: