11.7.1 Dominant Functors

    Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

    A functor $F\colon \mathcal{C}\to \mathcal{D}$ is dominant if every object of $\mathcal{D}$ is a retract of some object in $\mathrm{Im}\webleft (F\webright )$, i.e.:

    • (★)
    • For each $B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{D}\webright )$, there exist:
      • An object $A$ of $\mathcal{C}$;

      • A morphism $r\colon F\webleft (A\webright )\to B$ of $\mathcal{D}$;

      • A morphism $s\colon B\to F\webleft (A\webright )$ of $\mathcal{D}$;

      such that we have

    Let $F,G\colon \mathcal{C}\rightrightarrows \mathcal{D}$ be functors and let $I\colon \mathcal{X}\to \mathcal{C}$ be a functor.

    1. 1.

      Interaction With Right Whiskering. If $I$ is full and dominant, then the map

      \[ -\mathbin {\star }\operatorname {\mathrm{id}}_{I} \colon \operatorname {\mathrm{Nat}}\webleft (F,G\webright )\to \operatorname {\mathrm{Nat}}\webleft (F\circ I,G\circ I\webright ) \]

      is a bijection.

    2. 2.

      Interaction With Adjunctions. Let $\webleft (F,G\webright )\colon \mathcal{C}\mathbin {\rightleftarrows }\mathcal{D}$ be an adjunction.

      1. (a)

        If $F$ is dominant, then $G$ is faithful.

      2. (b)

        The following conditions are equivalent:

        1. (i)

          The functor $G$ is full.

        2. (ii)

          The restriction

          \[ \left.G\right\vert _{\mathrm{Im}_{F}}\colon \mathrm{Im}\webleft (F\webright )\to \mathcal{C} \]

          of $G$ to $\mathrm{Im}\webleft (F\webright )$ is full.

    Is there a characterisation of functors $F\colon \mathcal{C}\to \mathcal{D}$ such that:

    1. 1.

      For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the precomposition functor

      \[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

      is dominant?

  • 2.

    For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor

    \[ F_{*}\colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright )\to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]

    is dominant?


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: