A functor $F\colon \mathcal{C}\to \mathcal{D}$ from $\mathcal{C}$ to $\mathcal{D}$1 consists of:
-
1.
Action on Objects. A map of sets
\[ F \colon \operatorname {\mathrm{Obj}}(\mathcal{C}) \to \operatorname {\mathrm{Obj}}(\mathcal{D}), \]called the action on objects of $F$.
-
2.
Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, a map
\[ F_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(F(A),F(B)), \]called the action on morphisms of $F$ at $(A,B)$2.
satisfying the following conditions:
-
1.
Preservation of Identities. For each $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the diagram
commutes, i.e. we have\[ F(\operatorname {\mathrm{id}}_{A}) = \operatorname {\mathrm{id}}_{F(A)}. \] -
2.
Preservation of Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the diagram
commutes, i.e. for each composable pair $(g,f)$ of morphisms of $\mathcal{C}$, we have\[ F(g\circ f) = F(g)\circ F(f). \]
- 1Further Terminology: Also called a covariant functor.
- 2Further Terminology: Also called action on $\operatorname {\mathrm{Hom}}$-sets of $F$ at $(A,B)$.