3.1.1 Functions

A function is a functional and total relation.

Throughout this work, we will sometimes denote a function $f\colon X\to Y$ by

\[ f\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[x\mapsto f(x)]\mspace {-3mu}]. \]

  1. 1.

    For example, given a function

    \[ \Phi \colon \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(X,Y)\to K \]

    taking values on a set of functions such as $\operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(X,Y)$, we will sometimes also write

    \[ \Phi (f)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi ([\mspace {-3mu}[x\mapsto f(x)]\mspace {-3mu}]). \]
  2. 2.

    This notational choice is based on the lambda notation

    \[ f\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\lambda x.\ f(x)), \]

    but uses a “$\mathord {\mapsto }$” symbol for better spacing and double brackets instead of either:

    1. (a)

      Square brackets $[x\mapsto f(x)]$;

    2. (b)

      Parentheses $(x\mapsto f(x))$;

    hoping to improve readability when dealing with e.g.:

    1. (a)

      Equivalence classes, cf.:

      1. (i)

        $[\mspace {-3mu}[[x]\mapsto f([x])]\mspace {-3mu}]$

      2. (ii)

        $[[x]\mapsto f([x])]$

      3. (iii)

        $(\lambda [x].\ f([x]))$

    2. (b)

      Function evaluations, cf.:

      1. (i)

        $\Phi ([\mspace {-3mu}[x\mapsto f(x)]\mspace {-3mu}])$

      2. (ii)

        $\Phi ((x\mapsto f(x)))$

      3. (iii)

        $\Phi ((\lambda x.\ f(x)))$

  3. 3.

    We will also sometimes write $-$, $-_{1}$, $-_{2}$, etc. for the arguments of a function. Some examples include:

    1. (a)

      Writing $f(-_{1})$ for a function $f\colon A\to B$.

    2. (b)

      Writing $f(-_{1},-_{2})$ for a function $f\colon A\times B\to C$.

    3. (c)

      Given a function $f\colon A\times B\to C$, writing

      \[ f(a,-)\colon B\to C \]

      for the function $[\mspace {-3mu}[b\mapsto f(a,b)]\mspace {-3mu}]$.

    4. (d)

      Denoting a composition of the form

      \[ A\times B\overset {\phi \times \operatorname {\mathrm{id}}_{B}}{\to }A'\times B\overset {f}{\to }C \]

      by $f(\phi (-_{1}),-_{2})$.

  4. 4.

    Finally, given a function $f\colon A\to B$, we will sometimes write

    \[ \mathrm{ev}_{a}(f)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f(a) \]

    for the value of $f$ at some $a\in A$.

For an example of the above notations being used in practice, see the proof of the adjunction

stated in Chapter 4: Constructions With Sets, Item 2 of Proposition 4.1.3.1.3.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: