The product of $A$ and $B$1 is the product of $A$ and $B$ in $\mathsf{Sets}$ as in ,
.
- 1Further Terminology: Also called the Cartesian product of $A$ and $B$.
Let $A$ and $B$ be sets.
The product of $A$ and $B$1 is the product of $A$ and $B$ in $\mathsf{Sets}$ as in ,
.
Concretely, the product of $A$ and $B$ is the pair $\smash {\webleft (A\times B,\left\{ \operatorname {\mathrm{\mathrm{pr}}}_{1},\operatorname {\mathrm{\mathrm{pr}}}_{2}\right\} \webright )}$ consisting of:
The Limit. The set $A\times B$ defined by
The Cone. The maps
defined by
for each $\webleft (a,b\webright )\in A\times B$.
We claim that $A\times B$ is the categorical product of $A$ and $B$ in the category of sets. Indeed, suppose we have a diagram of the form
via
for each $x\in P$.
Let $A$, $B$, $C$, and $X$ be sets.
Functoriality. The assignments $A,B,\webleft (A,B\webright )\mapsto A\times B$ define functors
where $-_{1}\times -_{2}$ is the functor where
Action on Objects. For each $\webleft (A,B\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\times \mathsf{Sets}\webright )$, we have
Action on Morphisms. For each $\webleft (A,B\webright ),\webleft (X,Y\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, the action on $\operatorname {\mathrm{Hom}}$-sets
of $\times $ at $\webleft (\webleft (A,B\webright ),\webleft (X,Y\webright )\webright )$ is defined by sending $\webleft (f,g\webright )$ to the function
defined by
for each $\webleft (a,b\webright )\in A\times B$.
and where $A\times -$ and $-\times B$ are the partial functors of $-_{1}\times -_{2}$ at $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Adjointness I. We have adjunctions
natural in $A,B,C\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Adjointness II. We have an adjunction
natural in $A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$ and in $\webleft (B,C\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\times \mathsf{Sets}\webright )$.
Associativity. We have an isomorphism of sets
natural in $A,B,C\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Unitality. We have isomorphisms of sets
natural in $A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Commutativity. We have an isomorphism of sets
natural in $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Distributivity Over Coproducts. We have isomorphisms of sets
natural in $A,B,C\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Annihilation With the Empty Set. We have isomorphisms of sets
natural in $A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Distributivity Over Unions. Let $X$ be a set. For each $U,V,W\in \mathcal{P}\webleft (X\webright )$, we have equalities
of subsets of $\mathcal{P}\webleft (X\times X\webright )$.
Distributivity Over Intersections. Let $X$ be a set. For each $U,V,W\in \mathcal{P}\webleft (X\webright )$, we have equalities
of subsets of $\mathcal{P}\webleft (X\times X\webright )$.
Distributivity Over Differences. Let $X$ be a set. For each $U,V,W\in \mathcal{P}\webleft (X\webright )$, we have equalities
of subsets of $\mathcal{P}\webleft (X\times X\webright )$.
Distributivity Over Symmetric Differences. Let $X$ be a set. For each $U,V,W\in \mathcal{P}\webleft (X\webright )$, we have equalities
of subsets of $\mathcal{P}\webleft (X\times X\webright )$.
Middle-Four Exchange with Respect to Intersections. The diagram
for each $U,V,W,T\in \mathcal{P}\webleft (X\webright )$.
Symmetric Monoidality. The 8-tuple $\left(\phantom{\mathrlap {\alpha ^{\mathsf{Sets}}}}\mathsf{Sets}\right.$, $\times $, $\mathrm{pt}$, $\mathsf{Sets}\webleft (-_{1},-_{2}\webright )$, $\alpha ^{\mathsf{Sets}}$, $\lambda ^{\mathsf{Sets}}$, $\rho ^{\mathsf{Sets}}$, $\left.\sigma ^{\mathsf{Sets}}\right)$ is a closed symmetric monoidal category.
Symmetric Bimonoidality. The 18-tuple
is a symmetric closed bimonoidal category, where $\alpha ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\lambda ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\rho ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, and $\sigma ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$ are the natural transformations from Item 3, Item 4, and Item 5 of Proposition 4.2.3.1.3.
natural in $B,C\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, as the proof of the existence of the adjunction $A\times -\dashv \mathsf{Sets}\webleft (A,-\webright )$ follows almost exactly in the same way.
Map I. We define a map
by sending a function
to the function
for each $b\in B$. In terms of the $[\mspace {-3mu}[a\mapsto f\webleft (a\webright )]\mspace {-3mu}]$ notation of Chapter 3: Sets, Notation 3.1.1.1.2, we have
Map II. We define a map
given by sending a function
defined by
for each $\webleft (a,b\webright )\in A\times B$.
Invertibility I. We claim that
Indeed, given a function $\xi \colon A\times B\to C$, we have
Invertibility II. We claim that
Indeed, given a function
Naturality for $\Phi $, Part I. We need to show that, given a function $g\colon B\to B'$, the diagram
we have
Alternatively, using the $[\mspace {-3mu}[a\mapsto f\webleft (a\webright )]\mspace {-3mu}]$ notation of Chapter 3: Sets, Notation 3.1.1.1.2, we have
Naturality for $\Phi $, Part II. We need to show that, given a function $h\colon C\to C'$, the diagram
we have
Naturality for $\Psi $. Since $\Phi $ is natural in each argument and $\Phi $ is a componentwise inverse to $\Psi $ in each argument, it follows from Chapter 11: Categories, Item 2 of Proposition 11.9.7.1.2 that $\Psi $ is also natural in each argument.
This finishes the proof.
As shown in Item 1 of Proposition 4.1.3.1.3, the Cartesian product of sets defines a functor
This functor is the $\webleft (k,\ell \webright )=\webleft (-1,-1\webright )$ case of a family of functors
of tensor products of $\mathbb {E}_{k}$-monoid objects on $\mathsf{Sets}$ with $\mathbb {E}_{\ell }$-monoid objects on $\mathsf{Sets}$; see .
We may state the equalities in Item 9, Item 10, Item 11, and Item 12 of Proposition 4.1.3.1.3 as the commutativity of the following diagrams: