4.1.3 Binary Products of Sets

    Let $A$ and $B$ be sets.

    The product of $A$ and $B$1 is the product of $A$ and $B$ in $\mathsf{Sets}$ as in Unresolved reference, Unresolved reference.


    1. 1Further Terminology: Also called the Cartesian product of $A$ and $B$.

    Concretely, the product of $A$ and $B$ is the pair $\smash {(A\times B,\left\{ \operatorname {\mathrm{\mathrm{pr}}}_{1},\operatorname {\mathrm{\mathrm{pr}}}_{2}\right\} )}$ consisting of:

    1. 1.

      The Limit. The set $A\times B$ defined by

      \begin{align*} A\times B & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\prod _{z\in \left\{ A,B\right\} }z\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ f\in \mathsf{Sets}(\left\{ 0,1\right\} ,A\cup B)\ \middle |\ \text{we have $f(0)\in A$ and $f(1)\in B$}\right\} \\ & \cong \left\{ \left\{ \left\{ a\right\} ,\left\{ a,b\right\} \right\} \in \mathcal{P}(\mathcal{P}(A\cup B))\ \middle |\ \text{we have $a\in A$ and $b\in B$}\right\} \\ & \cong \left\{ \begin{aligned} & \text{ordered pairs $(a,b)$ with}\\ & \text{$a\in A$ and $b\in B$}\end{aligned} \right\} .\end{align*}
    2. 2.

      The Cone. The maps

      \begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1} & \colon A\times B\to A,\\ \operatorname {\mathrm{\mathrm{pr}}}_{2} & \colon A\times B\to B \end{align*}

      defined by

      \begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1}(a,b) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}a,\\ \operatorname {\mathrm{\mathrm{pr}}}_{2}(a,b) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}b \end{align*}

      for each $(a,b)\in A\times B$.

    We claim that $A\times B$ is the categorical product of $A$ and $B$ in the category of sets. Indeed, suppose we have a diagram of the form

    in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon P\to A\times B$ making the diagram
    commute, being uniquely determined by the conditions

    \begin{align*} \operatorname {\mathrm{\mathrm{pr}}}_{1}\circ \phi & = p_{1},\\ \operatorname {\mathrm{\mathrm{pr}}}_{2}\circ \phi & = p_{2} \end{align*}

    via

    \[ \phi (x)=(p_{1}(x),p_{2}(x)) \]

    for each $x\in P$.

    Let $A$, $B$, $C$, and $X$ be sets.

    1. 1.

      Functoriality. The assignments $A,B,(A,B)\mapsto A\times B$ define functors

      \[ \begin{array}{ccc} A\times -\colon \mkern -15mu & \mathsf{Sets} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets},\\ -\times B\colon \mkern -15mu & \mathsf{Sets} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets},\\ -_{1}\times -_{2}\colon \mkern -15mu & \mathsf{Sets}\times \mathsf{Sets} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}, \end{array} \]

      where $-_{1}\times -_{2}$ is the functor where

      • Action on Objects. For each $(A,B)\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}\times \mathsf{Sets})$, we have

        \[ [-_{1}\times -_{2}](A,B)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\times B. \]
      • Action on Morphisms. For each $(A,B),(X,Y)\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, the action on $\operatorname {\mathrm{Hom}}$-sets

        \[ \mathord {\times }_{(A,B),(X,Y)} \colon \mathsf{Sets}(A,X)\times \mathsf{Sets}(B,Y)\to \mathsf{Sets}(A\times B,X\times Y) \]

        of $\times $ at $((A,B),(X,Y))$ is defined by sending $(f,g)$ to the function

        \[ f\times g\colon A\times B\to X\times Y \]

        defined by

        \[ [f\times g](a,b)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(f(a),g(b)) \]

        for each $(a,b)\in A\times B$.

      and where $A\times -$ and $-\times B$ are the partial functors of $-_{1}\times -_{2}$ at $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

    2. 2.

      Adjointness I. We have adjunctions

      witnessed by bijections

      \begin{align*} \mathsf{Sets}(A\times B,C) & \cong \mathsf{Sets}(A,\mathsf{Sets}(B,C)),\\ \mathsf{Sets}(A\times B,C) & \cong \mathsf{Sets}(B,\mathsf{Sets}(A,C)), \end{align*}

      natural in $A,B,C\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

    3. 3.

      Adjointness II. We have an adjunction

      witnessed by a bijection

      \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}\times \mathsf{Sets}}((A,A),(B,C))\cong \mathsf{Sets}(A,B\times C), \]

      natural in $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$ and in $(B,C)\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}\times \mathsf{Sets})$.

    4. 4.

      Associativity. We have an isomorphism of sets

      \[ \alpha ^{\mathsf{Sets}}_{A,B,C}\colon (A\times B)\times C\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }A\times (B\times C), \]

      natural in $A,B,C\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

    5. 5.

      Unitality. We have isomorphisms of sets

      \begin{align*} \lambda ^{\mathsf{Sets}}_{A} & \colon \mathrm{pt}\times A \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }A,\\ \rho ^{\mathsf{Sets}}_{A} & \colon A\times \mathrm{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }A, \end{align*}

      natural in $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

    6. 6.

      Commutativity. We have an isomorphism of sets

      \[ \sigma ^{\mathsf{Sets}}_{A,B}\colon A\times B \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }B\times A, \]

      natural in $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

    7. 7.

      Distributivity Over Coproducts. We have isomorphisms of sets

      \begin{align*} \delta ^{\mathsf{Sets}}_{\ell } & \colon A\times (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C) \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(A\times B)\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(A\times C),\\ \delta ^{\mathsf{Sets}}_{r} & \colon (A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B)\times C \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(A\times C)\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(B\times C), \end{align*}

      natural in $A,B,C\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

    8. 8.

      Annihilation With the Empty Set. We have isomorphisms of sets

      \begin{align*} \zeta ^{\mathsf{Sets}}_{\ell } & \colon \text{Ø}\times A \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\text{Ø},\\ \zeta ^{\mathsf{Sets}}_{r} & \colon A\times \text{Ø}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\text{Ø}, \end{align*}

      natural in $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

    9. 9.

      Distributivity Over Unions. Let $X$ be a set. For each $U,V,W\in \mathcal{P}(X)$, we have equalities

      \begin{align*} U\times (V\cup W) & = (U\times V)\cup (U\times W),\\ (U\cup V)\times W & = (U\times W)\cup (V\times W) \end{align*}

      of subsets of $\mathcal{P}(X\times X)$.

    10. 10.

      Distributivity Over Intersections. Let $X$ be a set. For each $U,V,W\in \mathcal{P}(X)$, we have equalities

      \begin{align*} U\times (V\cap W) & = (U\times V)\cap (U\times W),\\ (U\cap V)\times W & = (U\times W)\cap (V\times W) \end{align*}

      of subsets of $\mathcal{P}(X\times X)$.

  • 11.

    Distributivity Over Differences. Let $X$ be a set. For each $U,V,W\in \mathcal{P}(X)$, we have equalities

    \begin{align*} U\times (V\setminus W) & = (U\times V)\setminus (U\times W),\\ (U\setminus V)\times W & = (U\times W)\setminus (V\times W) \end{align*}

    of subsets of $\mathcal{P}(X\times X)$.

  • 12.

    Distributivity Over Symmetric Differences. Let $X$ be a set. For each $U,V,W\in \mathcal{P}(X)$, we have equalities

    \begin{align*} U\times (V\mathbin {\triangle }W) & = (U\times V)\mathbin {\triangle }(U\times W),\\ (U\mathbin {\triangle }V)\times W & = (U\times W)\mathbin {\triangle }(V\times W) \end{align*}

    of subsets of $\mathcal{P}(X\times X)$.

  • 13.

    Middle-Four Exchange with Respect to Intersections. The diagram

    commutes, i.e. we have

    \[ (U\times V)\cap (W\times T)=(U\cap V)\times (W\cap T). \]

    for each $U,V,W,T\in \mathcal{P}(X)$.

  • 14.

    Symmetric Monoidality. The 8-tuple $\left(\phantom{\mathrlap {\alpha ^{\mathsf{Sets}}}}\mathsf{Sets}\right.$, $\times $, $\mathrm{pt}$, $\mathsf{Sets}(-_{1},-_{2})$, $\alpha ^{\mathsf{Sets}}$, $\lambda ^{\mathsf{Sets}}$, $\rho ^{\mathsf{Sets}}$, $\left.\sigma ^{\mathsf{Sets}}\right)$ is a closed symmetric monoidal category.

  • 15.

    Symmetric Bimonoidality. The 18-tuple

    \[ \begin{aligned} & \left(\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\times ,\text{Ø},\mathrm{pt},\mathsf{Sets}(-_{1},-_{2}),\alpha ^{\mathsf{Sets}},\lambda ^{\mathsf{Sets}},\rho ^{\mathsf{Sets}},\sigma ^{\mathsf{Sets}},\right.\\ & \left.\alpha ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}},\lambda ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}},\rho ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}},\sigma ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}},\delta ^{\mathsf{Sets}}_{\ell },\delta ^{\mathsf{Sets}}_{r},\zeta ^{\mathsf{Sets}}_{\ell },\zeta ^{\mathsf{Sets}}_{r}\right),\end{aligned} \]

    is a symmetric closed bimonoidal category, where $\alpha ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\lambda ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\rho ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, and $\sigma ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$ are the natural transformations from Item 3, Item 4, and Item 5 of Proposition 4.2.3.1.3.

  • Item 1: Functoriality
    This follows from Unresolved reference, Unresolved reference of Unresolved reference.

    Item 2: Adjointness
    We prove only that there’s an adjunction $-\times B\dashv \mathsf{Sets}(B,-)$, witnessed by a bijection

    \[ \mathsf{Sets}(A\times B,C)\cong \mathsf{Sets}(A,\mathsf{Sets}(B,C)), \]

    natural in $B,C\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, as the proof of the existence of the adjunction $A\times -\dashv \mathsf{Sets}(A,-)$ follows almost exactly in the same way.

    • Map I. We define a map

      \[ \Phi _{B,C}\colon \mathsf{Sets}(A\times B,C)\to \mathsf{Sets}(A,\mathsf{Sets}(B,C)), \]

      by sending a function

      \[ \xi \colon A\times B\to C \]

      to the function

      where we define

      \[ \xi ^{\dagger }_{a}(b)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi (a,b) \]

      for each $b\in B$. In terms of the $[\mspace {-3mu}[a\mapsto f(a)]\mspace {-3mu}]$ notation of Chapter 3: Sets, Notation 3.1.1.1.2, we have

      \[ \xi ^{\dagger }\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[a\mapsto [\mspace {-3mu}[b\mapsto \xi (a,b)]\mspace {-3mu}]]\mspace {-3mu}]. \]
    • Map II. We define a map

      \[ \Psi _{B,C}\colon \mathsf{Sets}(A,\mathsf{Sets}(B,C)),\to \mathsf{Sets}(A\times B,C) \]

      given by sending a function

      to the function

      \[ \xi ^{\dagger }\colon A\times B\to C \]

      defined by

      \begin{align*} \xi ^{\dagger }(a,b) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{ev}_{b}(\mathrm{ev}_{a}(\xi ))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{ev}_{b}(\xi _{a})\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi _{a}(b)\end{align*}

      for each $(a,b)\in A\times B$.

    • Invertibility I. We claim that

      \[ \Psi _{A,B}\circ \Phi _{A,B}=\operatorname {\mathrm{id}}_{\mathsf{Sets}(A\times B,C)}. \]

      Indeed, given a function $\xi \colon A\times B\to C$, we have

      \begin{align*} [\Psi _{A,B}\circ \Phi _{A,B}](\xi ) & = \Psi _{A,B}(\Phi _{A,B}(\xi ))\\ & = \Psi _{A,B}(\Phi _{A,B}([\mspace {-3mu}[(a,b)\mapsto \xi (a,b)]\mspace {-3mu}]))\\ & = \Psi _{A,B}([\mspace {-3mu}[a\mapsto [\mspace {-3mu}[b\mapsto \xi (a,b)]\mspace {-3mu}]]\mspace {-3mu}])\\ & = \Psi _{A,B}([\mspace {-3mu}[a'\mapsto [\mspace {-3mu}[b'\mapsto \xi (a',b')]\mspace {-3mu}]]\mspace {-3mu}])\\ & = [\mspace {-3mu}[(a,b)\mapsto \mathrm{ev}_{b}(\mathrm{ev}_{a}([\mspace {-3mu}[a'\mapsto [\mspace {-3mu}[b'\mapsto \xi (a',b')]\mspace {-3mu}]]\mspace {-3mu}]))]\mspace {-3mu}]\\ & = [\mspace {-3mu}[(a,b)\mapsto \mathrm{ev}_{b}([\mspace {-3mu}[b'\mapsto \xi (a,b')]\mspace {-3mu}])]\mspace {-3mu}]\\ & = [\mspace {-3mu}[(a,b)\mapsto \xi (a,b)]\mspace {-3mu}]\\ & = \xi . \end{align*}
    • Invertibility II. We claim that

      \[ \Phi _{A,B}\circ \Psi _{A,B}=\operatorname {\mathrm{id}}_{\mathsf{Sets}(A,\mathsf{Sets}(B,C))}. \]

      Indeed, given a function

      we have

      \begin{align*} [\Phi _{A,B}\circ \Psi _{A,B}](\xi ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{A,B}(\Psi _{A,B}(\xi ))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{A,B}([\mspace {-3mu}[(a,b)\mapsto \xi _{a}(b)]\mspace {-3mu}])\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{A,B}([\mspace {-3mu}[(a',b')\mapsto \xi _{a'}(b')]\mspace {-3mu}])\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[a\mapsto [\mspace {-3mu}[b\mapsto \mathrm{ev}_{(a,b)}([\mspace {-3mu}[(a',b')\mapsto \xi _{a'}(b')]\mspace {-3mu}])]\mspace {-3mu}]]\mspace {-3mu}]\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[a\mapsto [\mspace {-3mu}[b\mapsto \xi _{a}(b)]\mspace {-3mu}]]\mspace {-3mu}]\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[a\mapsto \xi _{a}]\mspace {-3mu}]\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi .\end{align*}
    • Naturality for $\Phi $, Part I. We need to show that, given a function $g\colon B\to B'$, the diagram

      commutes. Indeed, given a function

      \[ \xi \colon A\times B'\to C, \]

      we have

      \begin{align*} [\Phi _{B,C}\circ (\operatorname {\mathrm{id}}_{A}\times g^{*})](\xi ) & = \Phi _{B,C}([\operatorname {\mathrm{id}}_{A}\times g^{*}](\xi ))\\ & = \Phi _{B,C}(\xi (-_{1},g(-_{2})))\\ & = [\xi (-_{1},g(-_{2}))]^{\dagger }\\ & = \xi ^{\dagger }_{-_{1}}(g(-_{2}))\\ & = (g^{*})_{!}(\xi ^{\dagger })\\ & = (g^{*})_{!}(\Phi _{B',C}(\xi ))\\ & = [(g^{*})_{!}\circ \Phi _{B',C}](\xi ). \end{align*}

      Alternatively, using the $[\mspace {-3mu}[a\mapsto f(a)]\mspace {-3mu}]$ notation of Chapter 3: Sets, Notation 3.1.1.1.2, we have

      \begin{align*} [\Phi _{B,C}\circ (\operatorname {\mathrm{id}}_{A}\times g^{*})](\xi ) & = \Phi _{B,C}([\operatorname {\mathrm{id}}_{A}\times g^{*}](\xi ))\\ & = \Phi _{B,C}([\operatorname {\mathrm{id}}_{A}\times g^{*}]([\mspace {-3mu}[(a,b')\mapsto \xi (a,b')]\mspace {-3mu}]))\\ & = \Phi _{B,C}([\mspace {-3mu}[(a,b)\mapsto \xi (a,g(b))]\mspace {-3mu}])\\ & = [\mspace {-3mu}[a\mapsto [\mspace {-3mu}[b\mapsto \xi (a,g(b))]\mspace {-3mu}]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[a\mapsto g^{*}([\mspace {-3mu}[b'\mapsto \xi (a,b')]\mspace {-3mu}])]\mspace {-3mu}]\\ & = (g^{*})_{!}([\mspace {-3mu}[a\mapsto [\mspace {-3mu}[b'\mapsto \xi (a,b')]\mspace {-3mu}]]\mspace {-3mu}])\\ & = (g^{*})_{!}(\Phi _{B',C}([\mspace {-3mu}[(a,b')\mapsto \xi (a,b')]\mspace {-3mu}]))\\ & = (g^{*})_{!}(\Phi _{B',C}(\xi ))\\ & = [(g^{*})_{!}\circ \Phi _{B',C}](\xi ). \end{align*}
    • Naturality for $\Phi $, Part II. We need to show that, given a function $h\colon C\to C'$, the diagram

      commutes. Indeed, given a function

      \[ \xi \colon A\times B\to C, \]

      we have

      \begin{align*} [\Phi _{B,C}\circ h_{!}](\xi ) & = \Phi _{B,C}(h_{!}(\xi ))\\ & = \Phi _{B,C}(h_{!}([\mspace {-3mu}[(a,b)\mapsto \xi (a,b)]\mspace {-3mu}]))\\ & = \Phi _{B,C}([\mspace {-3mu}[(a,b)\mapsto h(\xi (a,b))]\mspace {-3mu}])\\ & = [\mspace {-3mu}[a\mapsto [\mspace {-3mu}[b\mapsto h(\xi (a,b))]\mspace {-3mu}]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[a\mapsto h_{!}([\mspace {-3mu}[b\mapsto \xi (a,b)]\mspace {-3mu}]]\mspace {-3mu}])\\ & = (h_{!})_{!}([\mspace {-3mu}[a\mapsto [\mspace {-3mu}[b\mapsto \xi (a,b)]\mspace {-3mu}]]\mspace {-3mu}])\\ & = (h_{!})_{!}(\Phi _{B,C}([\mspace {-3mu}[(a,b)\mapsto \xi (a,b)]\mspace {-3mu}]))\\ & = (h_{!})_{!}(\Phi _{B,C}(\xi ))\\ & = [(h_{!})_{!}\circ \Phi _{B,C}](\xi ). \end{align*}
    • Naturality for $\Psi $. Since $\Phi $ is natural in each argument and $\Phi $ is a componentwise inverse to $\Psi $ in each argument, it follows from Chapter 11: Categories, Item 2 of Proposition 11.9.7.1.2 that $\Psi $ is also natural in each argument.

    This finishes the proof.

    Item 3: Adjointness II
    This follows from the universal property of the product.

    Item 4: Associativity
    This is proved in the proof of Chapter 5: Monoidal Structures on the Category of Sets, Definition 5.1.4.1.1.

    Item 5: Unitality
    This is proved in the proof of Chapter 5: Monoidal Structures on the Category of Sets, Definition 5.1.5.1.1 and Definition 5.1.6.1.1.

    Item 6: Commutativity
    This is proved in the proof of Chapter 5: Monoidal Structures on the Category of Sets, Definition 5.1.7.1.1.

    Item 7: Distributivity Over Coproducts
    This is proved in the proof of Chapter 5: Monoidal Structures on the Category of Sets, Definition 5.3.1.1.1 and Definition 5.3.2.1.1.

    Item 8: Annihilation With the Empty Set
    This is proved in the proof of Chapter 5: Monoidal Structures on the Category of Sets, Definition 5.3.3.1.1 and Definition 5.3.4.1.1.

    Item 9: Distributivity Over Unions
    See [Proof Wiki Contributors, Cartesian Product Distributes Over Union — Proof Wiki].

    Item 10: Distributivity Over Intersections
    See Corollary 1 of [Proof Wiki Contributors, Cartesian Product of Intersections — Proof Wiki].

    Item 11: Distributivity Over Differences
    See [Proof Wiki Contributors, Cartesian Product Distributes Over Set Difference — Proof Wiki].

    Item 12: Distributivity Over Symmetric Differences
    See [Proof Wiki Contributors, Cartesian Product Distributes Over Symmetric Difference — Proof Wiki].

    Item 13: Middle-Four Exchange With Respect to Intersections
    See Corollary 1 of [Proof Wiki Contributors, Cartesian Product of Intersections — Proof Wiki].

    Item 14: Symmetric Monoidality
    This is a repetition of Chapter 5: Monoidal Structures on the Category of Sets, Proposition 5.1.9.1.1, and is proved there.

    Item 15: Symmetric Bimonoidality
    This is a repetition of Chapter 5: Monoidal Structures on the Category of Sets, Proposition 5.3.5.1.1, and is proved there.

    As shown in Item 1 of Proposition 4.1.3.1.3, the Cartesian product of sets defines a functor

    \[ -_{1}\times -_{2}\colon \mathsf{Sets}\times \mathsf{Sets}\to \mathsf{Sets}. \]

    This functor is the $(k,\ell )=(-1,-1)$ case of a family of functors

    \[ \otimes _{k,\ell }\colon \mathsf{Mon}_{\mathbb {E}_{k}}(\mathsf{Sets})\times \mathsf{Mon}_{\mathbb {E}_{\ell }}(\mathsf{Sets})\to \mathsf{Mon}_{\mathbb {E}_{k+\ell }}(\mathsf{Sets}) \]

    of tensor products of $\mathbb {E}_{k}$-monoid objects on $\mathsf{Sets}$ with $\mathbb {E}_{\ell }$-monoid objects on $\mathsf{Sets}$; see Unresolved reference.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: