The symmetry of the product of sets is the natural isomorphism
at $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$ is defined by
for each $\webleft (x,y\webright )\in X\times Y$.
The symmetry of the product of sets is the natural isomorphism
at $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$ is defined by
for each $\webleft (x,y\webright )\in X\times Y$.
defined by
for each $\webleft (y,x\webright )\in Y\times X$. Indeed:
Invertibility I. We have
for each $\webleft (x,y\webright )\in X\times Y$, and therefore we have
Invertibility II. We have
for each $\webleft (y,x\webright )\in Y\times X$, and therefore we have
Therefore $\sigma ^{\mathsf{Sets}}_{X,Y}$ is indeed an isomorphism.
the diagram