5.1 The Monoidal Category of Sets and Products
- Subsection 5.1.1: Products of Sets
- Subsection 5.1.2: The Internal Hom of Sets
-
Subsection 5.1.3: The Monoidal Unit
- Definition 5.1.3.1.1: The Monoidal Unit of $\times $
-
Subsection 5.1.4: The Associator
- Definition 5.1.4.1.1: The Associator of $\times $
-
Subsection 5.1.5: The Left Unitor
- Definition 5.1.5.1.1: The Left Unitor of $\times $
-
Subsection 5.1.6: The Right Unitor
- Definition 5.1.6.1.1: The Right Unitor of $\times $
-
Subsection 5.1.7: The Symmetry
- Definition 5.1.7.1.1: The Symmetry of $\times $
- Subsection 5.1.8: The Diagonal
-
Subsection 5.1.9: The Monoidal Category of Sets and Products
- Proposition 5.1.9.1.1: The Monoidal Structure on Sets Associated to the Product
-
Subsection 5.1.10: The Universal Property of $\webleft (\mathsf{Sets},\times ,\mathrm{pt}\webright )$
- Theorem 5.1.10.1.1: The Universal Property of $\webleft (\mathsf{Sets},\times ,\mathrm{pt}\webright )$
- Corollary 5.1.10.1.2: A Second Universal Property for $\webleft (\mathsf{Sets},\times ,\mathrm{pt}\webright )$