The associator of the product of sets is the natural isomorphism
as in the diagram
at $\webleft (X,Y,Z\webright )$ is given by
for each $\webleft (\webleft (x,y\webright ),z\webright )\in \webleft (X\times Y\webright )\times Z$.
The associator of the product of sets is the natural isomorphism
as in the diagram
at $\webleft (X,Y,Z\webright )$ is given by
for each $\webleft (\webleft (x,y\webright ),z\webright )\in \webleft (X\times Y\webright )\times Z$.
defined by
for each $\webleft (x,\webleft (y,z\webright )\webright )\in X\times \webleft (Y\times Z\webright )$. Indeed:
Invertibility I. We have
for each $\webleft (\webleft (x,y\webright ),z\webright )\in \webleft (X\times Y\webright )\times Z$, and therefore we have
Invertibility II. We have
for each $\webleft (x,\webleft (y,z\webright )\webright )\in X\times \webleft (Y\times Z\webright )$, and therefore we have
Therefore $\alpha ^{\mathsf{Sets}}_{X,Y,Z}$ is indeed an isomorphism.
the diagram