The right unitor of the product of sets is the natural isomorphism
at $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$ is given by
for each $\webleft (x,\star \webright )\in X\times \mathrm{pt}$.
The right unitor of the product of sets is the natural isomorphism
at $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$ is given by
for each $\webleft (x,\star \webright )\in X\times \mathrm{pt}$.
defined by
for each $x\in X$. Indeed:
Invertibility I. We have
for each $\webleft (x,\star \webright )\in X\times \mathrm{pt}$, and therefore we have
Invertibility II. We have
for each $x\in X$, and therefore we have
Therefore $\rho ^{\mathsf{Sets}}_{X}$ is indeed an isomorphism.