5.2 The Monoidal Category of Sets and Coproducts
- Subsection 5.2.1: Coproducts of Sets
-
Subsection 5.2.2: The Monoidal Unit
- Definition 5.2.2.1.1: The Monoidal Unit of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$
-
Subsection 5.2.3: The Associator
- Definition 5.2.3.1.1: The Associator of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$
-
Subsection 5.2.4: The Left Unitor
- Definition 5.2.4.1.1: The Left Unitor of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$
-
Subsection 5.2.5: The Right Unitor
- Definition 5.2.5.1.1: The Right Unitor of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$
-
Subsection 5.2.6: The Symmetry
- Definition 5.2.6.1.1: The Symmetry of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$
-
Subsection 5.2.7: The Monoidal Category of Sets and Coproducts
- Proposition 5.2.7.1.1: The Monoidal Structure on Sets Associated to $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$