The product of $A$ and $B$1 is the product of $A$ and $B$ in $\mathsf{Sets}$ as in ,
.
- 1Further Terminology: Also called the Cartesian product of $A$ and $B$.
Let $A$ and $B$ be sets.
The product of $A$ and $B$1 is the product of $A$ and $B$ in $\mathsf{Sets}$ as in ,
.
Concretely, the product of $A$ and $B$ is the pair $\smash {(A\times B,\left\{ \operatorname {\mathrm{\mathrm{pr}}}_{1},\operatorname {\mathrm{\mathrm{pr}}}_{2}\right\} )}$ consisting of:
The Limit. The set $A\times B$ defined by
The Cone. The maps
defined by
for each $(a,b)\in A\times B$.
We claim that $A\times B$ is the categorical product of $A$ and $B$ in the category of sets. Indeed, suppose we have a diagram of the form
via
for each $x\in P$.
Let $A$, $B$, $C$, and $X$ be sets.
Functoriality. The assignments $A,B,(A,B)\mapsto A\times B$ define functors
where $-_{1}\times -_{2}$ is the functor where
Action on Objects. For each $(A,B)\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}\times \mathsf{Sets})$, we have
Action on Morphisms. For each $(A,B),(X,Y)\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, the action on $\operatorname {\mathrm{Hom}}$-sets
of $\times $ at $((A,B),(X,Y))$ is defined by sending $(f,g)$ to the function
defined by
for each $(a,b)\in A\times B$.
and where $A\times -$ and $-\times B$ are the partial functors of $-_{1}\times -_{2}$ at $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.
Adjointness I. We have adjunctions
natural in $A,B,C\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.
Adjointness II. We have an adjunction
natural in $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$ and in $(B,C)\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}\times \mathsf{Sets})$.
Associativity. We have an isomorphism of sets
natural in $A,B,C\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.
Unitality. We have isomorphisms of sets
natural in $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.
Commutativity. We have an isomorphism of sets
natural in $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.
Distributivity Over Coproducts. We have isomorphisms of sets
natural in $A,B,C\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.
Annihilation With the Empty Set. We have isomorphisms of sets
natural in $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.
Distributivity Over Unions. Let $X$ be a set. For each $U,V,W\in \mathcal{P}(X)$, we have equalities
of subsets of $\mathcal{P}(X\times X)$.
Distributivity Over Intersections. Let $X$ be a set. For each $U,V,W\in \mathcal{P}(X)$, we have equalities
of subsets of $\mathcal{P}(X\times X)$.
Distributivity Over Differences. Let $X$ be a set. For each $U,V,W\in \mathcal{P}(X)$, we have equalities
of subsets of $\mathcal{P}(X\times X)$.
Distributivity Over Symmetric Differences. Let $X$ be a set. For each $U,V,W\in \mathcal{P}(X)$, we have equalities
of subsets of $\mathcal{P}(X\times X)$.
Middle-Four Exchange with Respect to Intersections. The diagram
for each $U,V,W,T\in \mathcal{P}(X)$.
Symmetric Monoidality. The 8-tuple $\left(\phantom{\mathrlap {\alpha ^{\mathsf{Sets}}}}\mathsf{Sets}\right.$, $\times $, $\mathrm{pt}$, $\mathsf{Sets}(-_{1},-_{2})$, $\alpha ^{\mathsf{Sets}}$, $\lambda ^{\mathsf{Sets}}$, $\rho ^{\mathsf{Sets}}$, $\left.\sigma ^{\mathsf{Sets}}\right)$ is a closed symmetric monoidal category.
Symmetric Bimonoidality. The 18-tuple
is a symmetric closed bimonoidal category, where $\alpha ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\lambda ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\rho ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, and $\sigma ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$ are the natural transformations from Item 3, Item 4, and Item 5 of Proposition 4.2.3.1.3.
natural in $B,C\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, as the proof of the existence of the adjunction $A\times -\dashv \mathsf{Sets}(A,-)$ follows almost exactly in the same way.
Map I. We define a map
by sending a function
to the function
for each $b\in B$. In terms of the $[\mspace {-3mu}[a\mapsto f(a)]\mspace {-3mu}]$ notation of Chapter 3: Sets, Notation 3.1.1.1.2, we have
Map II. We define a map
given by sending a function
defined by
for each $(a,b)\in A\times B$.
Invertibility I. We claim that
Indeed, given a function $\xi \colon A\times B\to C$, we have
Invertibility II. We claim that
Indeed, given a function
Naturality for $\Phi $, Part I. We need to show that, given a function $g\colon B\to B'$, the diagram
we have
Alternatively, using the $[\mspace {-3mu}[a\mapsto f(a)]\mspace {-3mu}]$ notation of Chapter 3: Sets, Notation 3.1.1.1.2, we have
Naturality for $\Phi $, Part II. We need to show that, given a function $h\colon C\to C'$, the diagram
we have
Naturality for $\Psi $. Since $\Phi $ is natural in each argument and $\Phi $ is a componentwise inverse to $\Psi $ in each argument, it follows from Chapter 11: Categories, Item 2 of Proposition 11.9.7.1.2 that $\Psi $ is also natural in each argument.
This finishes the proof.
As shown in Item 1 of Proposition 4.1.3.1.3, the Cartesian product of sets defines a functor
This functor is the $(k,\ell )=(-1,-1)$ case of a family of functors
of tensor products of $\mathbb {E}_{k}$-monoid objects on $\mathsf{Sets}$ with $\mathbb {E}_{\ell }$-monoid objects on $\mathsf{Sets}$; see .