3.1.1 Functions

    A function is a functional and total relation.

    Throughout this work, we will sometimes denote a function $f\colon X\to Y$ by

    \[ f\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[x\mapsto f\webleft (x\webright )]\mspace {-3mu}]. \]

    1. 1.

      For example, given a function

      \[ \Phi \colon \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (X,Y\webright )\to K \]

      taking values on a set of functions such as $\operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (X,Y\webright )$, we will sometimes also write

      \[ \Phi \webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi \webleft ([\mspace {-3mu}[x\mapsto f\webleft (x\webright )]\mspace {-3mu}]\webright ). \]
    2. 2.

      This notational choice is based on the lambda notation

      \[ f\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\lambda x.\ f\webleft (x\webright )\webright ), \]

      but uses a “$\mathord {\mapsto }$” symbol for better spacing and double brackets instead of either:

      1. (a)

        Square brackets $\webleft [x\mapsto f\webleft (x\webright )\webright ]$;

      2. (b)

        Parentheses $\webleft (x\mapsto f\webleft (x\webright )\webright )$;

      hoping to improve readability when dealing with e.g.:

      1. (a)

        Equivalence classes, cf.:

        1. (i)

          $[\mspace {-3mu}[\webleft [x\webright ]\mapsto f\webleft (\webleft [x\webright ]\webright )]\mspace {-3mu}]$

  • (ii)

    $\webleft [\webleft [x\webright ]\mapsto f\webleft (\webleft [x\webright ]\webright )\webright ]$

  • (iii)

    $\webleft (\lambda \webleft [x\webright ].\ f\webleft (\webleft [x\webright ]\webright )\webright )$

  • (b)

    Function evaluations, cf.:

    1. (i)

      $\Phi \webleft ([\mspace {-3mu}[x\mapsto f\webleft (x\webright )]\mspace {-3mu}]\webright )$

    2. (ii)

      $\Phi \webleft (\webleft (x\mapsto f\webleft (x\webright )\webright )\webright )$

    3. (iii)

      $\Phi \webleft (\webleft (\lambda x.\ f\webleft (x\webright )\webright )\webright )$

  • 3.

    We will also sometimes write $-$, $-_{1}$, $-_{2}$, etc. for the arguments of a function. Some examples include:

    1. (a)

      Writing $f\webleft (-_{1}\webright )$ for a function $f\colon A\to B$.

    2. (b)

      Writing $f\webleft (-_{1},-_{2}\webright )$ for a function $f\colon A\times B\to C$.

    3. (c)

      Given a function $f\colon A\times B\to C$, writing

      \[ f\webleft (a,-\webright )\colon B\to C \]

      for the function $[\mspace {-3mu}[b\mapsto f\webleft (a,b\webright )]\mspace {-3mu}]$.

    4. (d)

      Denoting a composition of the form

      \[ A\times B\overset {\phi \times \operatorname {\mathrm{id}}_{B}}{\to }A'\times B\overset {f}{\to }C \]

      by $f\webleft (\phi \webleft (-_{1}\webright ),-_{2}\webright )$.

  • 4.

    Finally, given a function $f\colon A\to B$, we will sometimes write

    \[ \mathrm{ev}_{a}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (a\webright ) \]

    for the value of $f$ at some $a\in A$.

  • For an example of the above notations being used in practice, see the proof of the adjunction

    stated in Chapter 4: Constructions With Sets, Item 2 of Proposition 4.1.3.1.3.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: