11.2.4 Ordinal Categories

The $n$th ordinal category is the category $\mathbb {n}$ where1

  • Objects. We have

    \[ \operatorname {\mathrm{Obj}}\webleft (\mathbb {n}\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft [0\webright ],\ldots ,\webleft [n\webright ]\right\} . \]
  • Morphisms. For each $\webleft [i\webright ],\webleft [j\webright ]\in \operatorname {\mathrm{Obj}}\webleft (\mathbb {n}\webright )$, we have

    \[ \operatorname {\mathrm{Hom}}_{\mathbb {n}}\webleft (\webleft [i\webright ],\webleft [j\webright ]\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \left\{ \operatorname {\mathrm{id}}_{\webleft [i\webright ]}\right\} & \text{if $\webleft [i\webright ]=\webleft [j\webright ]$,}\\ \left\{ \webleft [i\webright ]\to \webleft [j\webright ]\right\} & \text{if $\webleft [j\webright ]<\webleft [i\webright ]$,}\\ \text{Ø}& \text{if $\webleft [j\webright ]>\webleft [i\webright ]$.} \end{cases} \]
  • Identities. For each $\webleft [i\webright ]\in \operatorname {\mathrm{Obj}}\webleft (\mathbb {n}\webright )$, the unit map

    \[ \mathbb {1}^{\mathbb {n}}_{\webleft [i\webright ]} \colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{\mathbb {n}}\webleft (\webleft [i\webright ],\webleft [i\webright ]\webright ) \]

    of $\mathbb {n}$ at $\webleft [i\webright ]$ is defined by

    \[ \operatorname {\mathrm{id}}^{\mathbb {n}}_{\webleft [i\webright ]} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{\webleft [i\webright ]}. \]
  • Composition. For each $\webleft [i\webright ],\webleft [j\webright ],\webleft [k\webright ]\in \operatorname {\mathrm{Obj}}\webleft (\mathbb {n}\webright )$, the composition map

    \[ \circ ^{\mathbb {n}}_{\webleft [i\webright ],\webleft [j\webright ],\webleft [k\webright ]} \colon \operatorname {\mathrm{Hom}}_{\mathbb {n}}\webleft (\webleft [j\webright ],\webleft [k\webright ]\webright ) \times \operatorname {\mathrm{Hom}}_{\mathbb {n}}\webleft (\webleft [i\webright ],\webleft [j\webright ]\webright ) \to \operatorname {\mathrm{Hom}}_{\mathbb {n}}\webleft (\webleft [i\webright ],\webleft [k\webright ]\webright ) \]

    of $\mathbb {n}$ at $\webleft (\webleft [i\webright ],\webleft [j\webright ],\webleft [k\webright ]\webright )$ is defined by

    \[ \begin{gathered} \operatorname {\mathrm{id}}_{\webleft [i\webright ]}\circ \operatorname {\mathrm{id}}_{\webleft [i\webright ]} = \operatorname {\mathrm{id}}_{\webleft [i\webright ]},\\ \webleft (\webleft [j\webright ]\to \webleft [k\webright ]\webright )\circ \webleft (\webleft [i\webright ]\to \webleft [j\webright ]\webright ) = \webleft (\webleft [i\webright ]\to \webleft [k\webright ]\webright ).\end{gathered} \]


  1. 1In other words, $\mathbb {n}$ is the category associated to the poset
    \[ \webleft [0\webright ]\to \webleft [1\webright ]\to \cdots \to \webleft [n-1\webright ]\to \webleft [n\webright ]. \]
    The category $\mathbb {n}$ for $n\geq 2$ may also be defined in terms of $\mathbb {0}$ and joins (Unresolved reference, Unresolved reference): we have isomorphisms of categories
    \begin{align*} \mathbb {1} & \cong \mathbb {0}\star \mathbb {0},\\ \mathbb {2} & \cong \mathbb {1}\star \mathbb {0}\\ & \cong \webleft (\mathbb {0}\star \mathbb {0}\webright )\star \mathbb {0},\\ \mathbb {3} & \cong \mathbb {2}\star \mathbb {0}\\ & \cong \webleft (\mathbb {1}\star \mathbb {0}\webright )\star \mathbb {0}\\ & \cong \webleft (\webleft (\mathbb {0}\star \mathbb {0}\webright )\star \mathbb {0}\webright )\star \mathbb {0},\\ \mathbb {4} & \cong \mathbb {3}\star \mathbb {0}\\ & \cong \webleft (\mathbb {2}\star \mathbb {0}\webright )\star \mathbb {0}\\ & \cong \webleft (\webleft (\mathbb {1}\star \mathbb {0}\webright )\star \mathbb {0}\webright )\star \mathbb {0}\\ & \cong \webleft (\webleft (\webleft (\mathbb {0}\star \mathbb {0}\webright )\star \mathbb {0}\webright )\star \mathbb {0}\webright )\star \mathbb {0}, \end{align*}
    and so on.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: