The vertical composition of two natural transformations $\alpha \colon F\Longrightarrow G$ and $\beta \colon G\Longrightarrow H$ as in the diagram
with
for each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$.
The vertical composition of two natural transformations $\alpha \colon F\Longrightarrow G$ and $\beta \colon G\Longrightarrow H$ as in the diagram
with
for each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$.
The naturality condition for $\beta \circ \alpha $ is the requirement that the boundary of the diagram
Subdiagram (1) commutes by the naturality of $\alpha $.
Subdiagram (2) commutes by the naturality of $\beta $.
so does the boundary diagram. Hence $\beta \circ \alpha $ is a natural transformation.
Let $\mathcal{C}$, $\mathcal{D}$, and $\mathcal{E}$ be categories.
Functionality. The assignment $\webleft (\beta ,\alpha \webright )\mapsto \beta \circ \alpha $ defines a function
Associativity. Let $F,G,H,K\colon \mathcal{C}\overset {\rightrightarrows }{\rightrightarrows }\mathcal{D}$ be functors. The diagram
we have
Unitality. Let $F,G\colon \mathcal{C}\rightrightarrows \mathcal{D}$ be functors.
Left Unitality. The diagram
Right Unitality. The diagram
Middle Four Exchange. Let $F_{1},F_{2},F_{3}\colon \mathcal{C}\to \mathcal{D}$ and $G_{1},G_{2},G_{3}\colon \mathcal{D}\to \mathcal{E}$ be functors. The diagram
for each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, showing the desired equality.
for each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, showing the desired equality.