11.10.3 The $2$-Category of Categories, Functors, and Natural Transformations

The $2$-category of (small) categories, functors, and natural transformations is the $2$-category $\mathsf{Cats}_{\mathsf{2}}$ where

  • Objects. The objects of $\mathsf{Cats}_{\mathsf{2}}$ are small categories.

  • $\mathsf{Hom}$-Categories. For each $\mathcal{C},\mathcal{D}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats}_{\mathsf{2}})$, we have

    \[ \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}(\mathcal{C},\mathcal{D}) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Fun}(\mathcal{C},\mathcal{D}). \]
  • Identities. For each $\mathcal{C}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats}_{\mathsf{2}})$, the unit functor

    \[ \mathbb {1}^{\mathsf{Cats}_{\mathsf{2}}}_{\mathcal{C}} \colon \mathsf{pt}\to \mathsf{Fun}(\mathcal{C},\mathcal{C}) \]

    of $\mathsf{Cats}_{\mathsf{2}}$ at $\mathcal{C}$ is the functor picking the identity functor $\operatorname {\mathrm{id}}_{\mathcal{C}}\colon \mathcal{C}\to \mathcal{C}$ of $\mathcal{C}$.

  • Composition. For each $\mathcal{C},\mathcal{D},\mathcal{E}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats}_{\mathsf{2}})$, the composition bifunctor

    \[ \circ ^{\mathsf{Cats}_{\mathsf{2}}}_{\mathcal{C},\mathcal{D},\mathcal{E}} \colon \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}(\mathcal{D},\mathcal{E}) \times \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}(\mathcal{C},\mathcal{D}) \to \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}(\mathcal{C},\mathcal{E}) \]

    of $\mathsf{Cats}_{\mathsf{2}}$ at $(\mathcal{C},\mathcal{D},\mathcal{E})$ is the functor where

    • Action on Objects. For each object $(G,F)\in \operatorname {\mathrm{Obj}}(\mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}(\mathcal{D},\mathcal{E})\times \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}(\mathcal{C},\mathcal{D}))$, we have

      \[ \circ ^{\mathsf{Cats}_{\mathsf{2}}}_{\mathcal{C},\mathcal{D},\mathcal{E}}(G,F) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}G\circ F. \]
    • Action on Morphisms. For each morphism $(\beta ,\alpha )\colon (K,H)\Longrightarrow (G,F)$ of $\mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}(\mathcal{D},\mathcal{E})\times \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}(\mathcal{C},\mathcal{D})$, we have

      \[ \circ ^{\mathsf{Cats}_{\mathsf{2}}}_{\mathcal{C},\mathcal{D},\mathcal{E}}(\beta ,\alpha ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\beta \mathbin {\star }\alpha , \]

      where $\beta \mathbin {\star }\alpha $ is the horizontal composition of $\alpha $ and $\beta $ of Definition 11.9.5.1.1.

Let $\mathcal{C}$ be a category.

  1. 1.

    2-Categorical Co/Completeness. The 2-category $\mathsf{Cats}_{\mathsf{2}}$ is complete and cocomplete as a 2-category, having all 2-categorical and bicategorical co/limits.

Item 1: Co/Completeness
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: