A bilinear morphism of pointed sets from $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ to $\webleft (Z,z_{0}\webright )$ is a map of sets
that is both left bilinear and right bilinear.
Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, and $\webleft (Z,z_{0}\webright )$ be pointed sets.
A bilinear morphism of pointed sets from $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ to $\webleft (Z,z_{0}\webright )$ is a map of sets
that is both left bilinear and right bilinear.
In detail, a bilinear morphism of pointed sets from $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ to $\webleft (Z,z_{0}\webright )$ is a map of sets
satisfying the following conditions:1,2
Left Unital Bilinearity. The diagram
Right Unital Bilinearity. The diagram
The set of bilinear morphisms of pointed sets from $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ to $\webleft (Z,z_{0}\webright )$ is the set $\smash {\operatorname {\mathrm{Hom}}^{\otimes }_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright )}$ defined by