7.1.3 Bilinear Morphisms of Pointed Sets

    Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, and $\webleft (Z,z_{0}\webright )$ be pointed sets.

    A bilinear morphism of pointed sets from $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ to $\webleft (Z,z_{0}\webright )$ is a map of sets

    \[ f \colon X\times Y \to Z \]

    that is both left bilinear and right bilinear.

    In detail, a bilinear morphism of pointed sets from $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ to $\webleft (Z,z_{0}\webright )$ is a map of sets

    \[ f \colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright ) \to \webleft (Z,z_{0}\webright ) \]

    satisfying the following conditions:1,2

    1. 1.

      Left Unital Bilinearity. The diagram

      commutes, i.e. for each $y\in Y$, we have

      \[ f\webleft (x_{0},y\webright ) = z_{0}. \]
  • 2.

    Right Unital Bilinearity. The diagram

    commutes, i.e. for each $x\in X$, we have

    \[ f\webleft (x,y_{0}\webright ) = z_{0}. \]

    1. 1Slogan: The map $f$ is bilinear if it preserves basepoints in each argument.
    2. 2Succinctly, $f$ is bilinear if we have
      \begin{align*} f\webleft (x_{0},y\webright ) & = z_{0},\\ f\webleft (x,y_{0}\webright ) & = z_{0} \end{align*}
      for each $x\in X$ and each $y\in Y$.

    The set of bilinear morphisms of pointed sets from $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ to $\webleft (Z,z_{0}\webright )$ is the set $\smash {\operatorname {\mathrm{Hom}}^{\otimes }_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright )}$ defined by

    \[ \operatorname {\mathrm{Hom}}^{\otimes }_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )\ \middle |\ \text{$f$ is bilinear}\right\} . \]


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: