The internal Hom1 of pointed sets from $\webleft (X,x_{0}\webright )$ to $\webleft (Y,y_{0}\webright )$ is the pointed set $\boldsymbol {\mathsf{Sets}}_{*}\webleft (\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\webright )$2 consisting of:
-
•
The Underlying Set. The set $\mathsf{Sets}_{*}\webleft (\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\webright )$ of morphisms of pointed sets from $\webleft (X,x_{0}\webright )$ to $\webleft (Y,y_{0}\webright )$.
-
•
The Basepoint. The element
\[ \Delta _{y_{0}}\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright ) \]of $\mathsf{Sets}_{*}\webleft (\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\webright )$ given by
\[ \Delta _{y_{0}}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}y_{0} \]for each $x\in X$.
- 1For a proof that $\boldsymbol {\mathsf{Sets}}_{*}$ is indeed the internal Hom of $\mathsf{Sets}_{*}$ with respect to the smash product of pointed sets, see Item 2 of Proposition 7.5.1.1.10.
- 2Further Notation: Also written $\mathbf{Hom}_{\boldsymbol {\mathsf{Sets}}_{*}}\webleft (X,Y\webright )$.