The internal Hom1 of pointed sets from $(X,x_{0})$ to $(Y,y_{0})$ is the pointed set $\boldsymbol {\mathsf{Sets}}_{*}((X,x_{0}),(Y,y_{0}))$2 consisting of:
-
•
The Underlying Set. The set $\mathsf{Sets}_{*}((X,x_{0}),(Y,y_{0}))$ of morphisms of pointed sets from $(X,x_{0})$ to $(Y,y_{0})$.
-
•
The Basepoint. The element
\[ \Delta _{y_{0}}\colon (X,x_{0})\to (Y,y_{0}) \]of $\mathsf{Sets}_{*}((X,x_{0}),(Y,y_{0}))$ given by
\[ \Delta _{y_{0}}(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}y_{0} \]for each $x\in X$.
- 1For a proof that $\boldsymbol {\mathsf{Sets}}_{*}$ is indeed the internal Hom of $\mathsf{Sets}_{*}$ with respect to the smash product of pointed sets, see Item 2 of Proposition 7.5.1.1.10.
- 2Further Notation: Also written $\mathbf{Hom}_{\boldsymbol {\mathsf{Sets}}_{*}}(X,Y)$.