7.5.2 The Internal Hom of Pointed Sets

    Let $(X,x_{0})$ and $(Y,y_{0})$ be pointed sets.

    The internal Hom1 of pointed sets from $(X,x_{0})$ to $(Y,y_{0})$ is the pointed set $\boldsymbol {\mathsf{Sets}}_{*}((X,x_{0}),(Y,y_{0}))$2 consisting of:

    • The Underlying Set. The set $\mathsf{Sets}_{*}((X,x_{0}),(Y,y_{0}))$ of morphisms of pointed sets from $(X,x_{0})$ to $(Y,y_{0})$.

    • The Basepoint. The element

      \[ \Delta _{y_{0}}\colon (X,x_{0})\to (Y,y_{0}) \]

      of $\mathsf{Sets}_{*}((X,x_{0}),(Y,y_{0}))$ given by

      \[ \Delta _{y_{0}}(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}y_{0} \]

      for each $x\in X$.


    1. 1For a proof that $\boldsymbol {\mathsf{Sets}}_{*}$ is indeed the internal Hom of $\mathsf{Sets}_{*}$ with respect to the smash product of pointed sets, see Item 2 of Proposition 7.5.1.1.10.
    2. 2Further Notation: Also written $\mathbf{Hom}_{\boldsymbol {\mathsf{Sets}}_{*}}(X,Y)$.

    Let $(X,x_{0})$ and $(Y,y_{0})$ be pointed sets.

    1. 1.

      Functoriality. The assignments $X,Y,(X,Y)\mapsto \boldsymbol {\mathsf{Sets}}_{*}(X,Y)$ define functors

      \[ \begin{array}{ccc} \boldsymbol {\mathsf{Sets}}_{*}(X,-)\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ \boldsymbol {\mathsf{Sets}}_{*}(-,Y)\colon \mkern -15mu & \mathsf{Sets}^{\mathrlap {\mathsf{op}}}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ \boldsymbol {\mathsf{Sets}}_{*}(-_{1},-_{2})\colon \mkern -15mu & \mathsf{Sets}^{\mathsf{op}}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}. \end{array} \]

      In particular, given pointed maps

      \begin{align*} f & \colon (X,x_{0}) \to (A,a_{0}),\\ g & \colon (Y,y_{0}) \to (B,b_{0}), \end{align*}

      the induced map

      \[ \boldsymbol {\mathsf{Sets}}_{*}(f,g)\colon \boldsymbol {\mathsf{Sets}}_{*}(A,Y)\to \boldsymbol {\mathsf{Sets}}_{*}(X,B) \]

      is given by

      \[ [\boldsymbol {\mathsf{Sets}}_{*}(f,g)](\phi )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g\circ \phi \circ f \]

      for each $\phi \in \boldsymbol {\mathsf{Sets}}_{*}(A,Y)$.

    2. 2.

      Adjointness. We have adjunctions

      witnessed by bijections

      \begin{align*} \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X\wedge Y,Z) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X,\boldsymbol {\mathsf{Sets}}_{*}(Y,Z)),\\ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X\wedge Y,Z) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X,\boldsymbol {\mathsf{Sets}}_{*}(A,Z)), \end{align*}

      natural in $(X,x_{0}),(Y,y_{0}),(Z,z_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$.

  • 3.

    Enriched Adjointness. We have $\mathsf{Sets}_{*}$-enriched adjunctions

    witnessed by isomorphisms of pointed sets

    \begin{align*} \boldsymbol {\mathsf{Sets}}_{*}(X\wedge Y,Z) & \cong \boldsymbol {\mathsf{Sets}}_{*}(X,\boldsymbol {\mathsf{Sets}}_{*}(Y,Z)),\\ \boldsymbol {\mathsf{Sets}}_{*}(X\wedge Y,Z) & \cong \boldsymbol {\mathsf{Sets}}_{*}(X,\boldsymbol {\mathsf{Sets}}_{*}(A,Z)), \end{align*}

    natural in $(X,x_{0}),(Y,y_{0}),(Z,z_{0})\in \operatorname {\mathrm{Obj}}(\boldsymbol {\mathsf{Sets}}_{*})$.

  • Item 1: Functoriality
    This follows from Chapter 4: Constructions With Sets, Item 1 of Proposition 4.3.5.1.2 and from the equalities

    \begin{align*} g\circ \Delta _{y_{0}} & = \Delta _{z_{0}},\\ \Delta _{y_{0}}\circ f & = \Delta _{y_{0}} \end{align*}

    for morphisms $f\colon (K,k_{0})\to (X,x_{0})$ and $g\colon (Y,y_{0})\to (Z,z_{0})$, which guarantee pre- and postcomposition by morphisms of pointed sets to also be morphisms of pointed sets.

    Item 2: Adjointness
    This is a repetition of Item 2 of Proposition 7.5.1.1.10, and is proved there.

    Item 3: Enriched Adjointness
    This is a repetition of Item 3 of Proposition 7.5.1.1.10, and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: