8.3.4 The 2-Category of Relations

The 2-category of relations is the locally posetal 2-category $\boldsymbol {\mathsf{Rel}}$ where

  • Objects. The objects of $\boldsymbol {\mathsf{Rel}}$ are sets.

  • $\mathbf{Hom}$-Objects. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, we have

    \begin{align*} \operatorname {\mathrm{Hom}}_{\boldsymbol {\mathsf{Rel}}}(A,B) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathbf{Rel}(A,B)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\mathrm{Rel}(A,B),\subset ).\end{align*}
  • Identities. For each $A\in \operatorname {\mathrm{Obj}}(\boldsymbol {\mathsf{Rel}})$, the unit map

    \[ \mathbb {1}^{\boldsymbol {\mathsf{Rel}}}_{A} \colon \mathrm{pt}\to \mathbf{Rel}(A,A) \]

    of $\boldsymbol {\mathsf{Rel}}$ at $A$ is defined by

    \[ \operatorname {\mathrm{id}}^{\boldsymbol {\mathsf{Rel}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{A}(-_{1},-_{2}), \]

    where $\chi _{A}(-_{1},-_{2})$ is the characteristic relation of $A$ of Example 8.2.1.1.3.

  • Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}(\boldsymbol {\mathsf{Rel}})$, the composition map1

    \[ \circ ^{\boldsymbol {\mathsf{Rel}}}_{A,B,C}\colon \mathbf{Rel}(B,C)\times \mathbf{Rel}(A,B)\to \mathbf{Rel}(A,C) \]

    of $\boldsymbol {\mathsf{Rel}}$ at $(A,B,C)$ is defined by

    \[ S\mathbin {{\circ }^{\boldsymbol {\mathsf{Rel}}}_{A,B,C}}R \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S\mathbin {\diamond }R \]

    for each $(S,R)\in \boldsymbol {\mathsf{Rel}}(B,C)\times \boldsymbol {\mathsf{Rel}}(A,B)$, where $S\mathbin {\diamond }R$ is the composition of $S$ and $R$ of Definition 8.1.3.1.1.


  1. 1That this is indeed a morphism of posets is proven in Unresolved reference of Proposition 8.1.3.1.4.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: