8 Relations
This chapter contains some material about relations. Notably, we discuss and explore:
-
1.
The definition of relations (Section 8.1.1).
-
2.
How relations may be viewed as decategorification of profunctors (Section 8.1.2).
-
3.
The various kinds of categories that relations form, namely:
-
(a)
A category (Section 8.3.2).
-
(b)
A monoidal category (Section 8.3.3).
-
(c)
A 2-category (Section 8.3.4).
-
(d)
A double category (Section 8.3.5).
-
(a)
-
4.
The various categorical properties of the 2-category of relations, including:
-
(a)
The self-duality of $\mathsf{Rel}$ and $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.5.1.1.1).
-
(b)
Identifications of equivalences and isomorphisms in $\boldsymbol {\mathsf{Rel}}$ with bijections (Proposition 8.5.2.1.2).
-
(c)
Identifications of adjunctions in $\boldsymbol {\mathsf{Rel}}$ with functions (Proposition 8.5.3.1.1).
-
(d)
Identifications of monads in $\boldsymbol {\mathsf{Rel}}$ with preorders (
).
-
(e)
Identifications of comonads in $\boldsymbol {\mathsf{Rel}}$ with subsets (
).
-
(f)
A description of the monoids and comonoids in $\boldsymbol {\mathsf{Rel}}$ with respect to the Cartesian product (Remark 8.5.9.1.1).
- (g)
-
(h)
Characterisations of 2-categorical notions of monomorphisms in $\boldsymbol {\mathsf{Rel}}$ (
).
- (i)
-
(j)
Characterisations of 2-categorical notions of epimorphisms in $\boldsymbol {\mathsf{Rel}}$ (
).
-
(k)
The partial co/completeness of $\mathsf{Rel}$ (Proposition 8.5.14.1.1).
-
(l)
The existence or non-existence of Kan extensions and Kan lifts in $\mathsf{Rel}$ (
).
-
(m)
The closedness of $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.5.19.1.1).
-
(n)
The identification of $\boldsymbol {\mathsf{Rel}}$ with the category of free algebras of the powerset monad on $\mathsf{Sets}$ (Proposition 8.5.20.1.1).
-
(a)
-
5.
The adjoint pairs
\begin{align*} R_{!} \dashv R_{-1} & \colon \mathcal{P}(A) \rightleftarrows \mathcal{P}(B),\\ R^{-1} \dashv R_{*} & \colon \mathcal{P}(B) \rightleftarrows \mathcal{P}(A) \end{align*}of functors (morphisms of posets) between $\mathcal{P}(A)$ and $\mathcal{P}(B)$ induced by a relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$, as well as the properties of $R_{!}$, $R_{-1}$, $R^{-1}$, and $R_{*}$ (Section 8.7).
Of particular note are the following points:
-
(a)
These two pairs of adjoint functors are the counterpart for relations of the adjoint triple $f_{!}\dashv f^{-1}\dashv f_{*}$ induced by a function $f\colon A\to B$ studied in Chapter 4: Constructions With Sets, Section 4.6.
-
(b)
We have $R_{-1}=R^{-1}$ iff $R$ is total and functional (
of
).
-
(c)
As a consequence of the previous item, when $R$ comes from a function $f$, the pair of adjunctions
\[ R_{!}\dashv R_{-1}=R^{-1}\dashv R_{*} \]reduces to the triple adjunction
\[ f_{!}\dashv f^{-1}\dashv f_{*} \] -
(d)
The pairs $R_{!}\dashv R_{-1}$ and $R^{-1}\dashv R_{*}$ turn out to be rather important later on, as they appear in the definition and study of continuous, open, and closed relations between topological spaces (
,
).
-
(a)
-
6.
A description of two notions of “skew composition” on $\mathbf{Rel}(A,B)$, giving rise to left and right skew monoidal structures analogous to the left skew monoidal structure on $\mathsf{Fun}(\mathcal{C},\mathcal{D})$ appearing in the definition of a relative monad (Section 8.8 and Section 8.9).
This chapter is under revision. TODO:
-
1.
Replicate Section 8.5 for apartness composition
-
2.
Revise Section 8.7
-
3.
Add subsection “A Six Functor Formalism for Sets, Part 2”, now with relations, building upon Section 8.7.
-
4.
Replicate Section 8.7 for apartness composition
-
5.
Revise sections on skew monoidal structures on $\mathbf{Rel}(A,B)$
-
6.
Replicate the sections on skew monoidal structures on $\mathbf{Rel}(A,B)$ for apartness composition.
-
7.
Explore relative co/monads in $\boldsymbol {\mathsf{Rel}}$, defined to be co/monoids in $\mathbf{Rel}(A,B)$ with its left/right skew monoidal structures of Chapter 8: Relations, Section 8.8 and Section 8.9
-
8.
functional total relations defined with “satisfying the following equivalent conditions:”
- Section 8.1: Relations
-
Section 8.2: Examples of Relations
-
Subsection 8.2.1: Elementary Examples of Relations
- Example 8.2.1.1.1: The Trivial Relation
- Example 8.2.1.1.2: The Cotrivial Relation
- Example 8.2.1.1.3: The Characteristic Relation of a Set
- Example 8.2.1.1.4: The Antidiagonal Relation on a Set
- Example 8.2.1.1.5: Partial Functions
- Example 8.2.1.1.6: Square Roots
- Example 8.2.1.1.7: Complex Logarithms
- Example 8.2.1.1.8: More Examples of Relations
- Subsection 8.2.2: The Graph of a Function
- Subsection 8.2.3: The Inverse of a Function
-
Subsection 8.2.4: Representable Relations
- Definition 8.2.4.1.1: Representable Relations
-
Subsection 8.2.1: Elementary Examples of Relations
-
Section 8.3: Categories of Relations
-
Subsection 8.3.1: The Category of Relations Between Two Sets
- Definition 8.3.1.1.1: The Category of Relations Between Two Sets
-
Subsection 8.3.2: The Category of Relations
- Definition 8.3.2.1.1: The Category of Relations
-
Subsection 8.3.3: The Closed Symmetric Monoidal Category of Relations
-
Subsubsection 8.3.3.1: The Monoidal Product
- Definition 8.3.3.1.1: The Monoidal Product of $\mathsf{Rel}$
-
Subsubsection 8.3.3.2: The Monoidal Unit
- Definition 8.3.3.2.1: The Monoidal Unit of $\mathsf{Rel}$
-
Subsubsection 8.3.3.3: The Associator
- Definition 8.3.3.3.1: The Associator of $\mathsf{Rel}$
-
Subsubsection 8.3.3.4: The Left Unitor
- Definition 8.3.3.4.1: The Left Unitor of $\mathsf{Rel}$
-
Subsubsection 8.3.3.5: The Right Unitor
- Definition 8.3.3.5.1: The Right Unitor of $\mathsf{Rel}$
-
Subsubsection 8.3.3.6: The Symmetry
- Definition 8.3.3.6.1: The Symmetry of $\mathsf{Rel}$
- Subsubsection 8.3.3.7: The Internal Hom
-
Subsubsection 8.3.3.8: The Closed Symmetric Monoidal Category of Relations
- Proposition 8.3.3.8.1: The Closed Symmetric Monoidal Category of Relations
-
Subsubsection 8.3.3.1: The Monoidal Product
-
Subsection 8.3.4: The 2-Category of Relations
- Definition 8.3.4.1.1: The 2-Category of Relations
-
Subsection 8.3.5: The Double Category of Relations
-
Subsubsection 8.3.5.1: The Double Category of Relations
- Definition 8.3.5.1.1: The Double Category of Relations
-
Subsubsection 8.3.5.2: Horizontal Identities
- Definition 8.3.5.2.1: The Horizontal Identities of $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.3: Horizontal Composition
- Definition 8.3.5.3.1: The Horizontal Composition of $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.4: Vertical Composition of 2-Morphisms
- Definition 8.3.5.4.1: The Vertical Composition of 2-Morphisms in $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.5: The Associators
- Definition 8.3.5.5.1: The Associators of $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.6: The Left Unitors
- Definition 8.3.5.6.1: The Left Unitors of $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.7: The Right Unitors
- Definition 8.3.5.7.1: The Right Unitors of $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.1: The Double Category of Relations
-
Subsection 8.3.1: The Category of Relations Between Two Sets
-
Section 8.4: Categories of Relations With Apartness Composition
- Subsection 8.4.1: The Category of Relations With Apartness Composition
- Subsection 8.4.2: The 2-Category of Relations With Apartness Composition
-
Subsection 8.4.3: The Linear Bicategory of Relations
- Definition 8.4.3.1.1: The Linear Bicategory of Relations
-
Subsection 8.4.4: Other Categorical Structures With Apartness Composition
- Remark 8.4.4.1.1: Other Categorical Structures With Apartness Composition
-
Section 8.5: Properties of the 2-Category of Relations
-
Subsection 8.5.1: Self-Duality
- Proposition 8.5.1.1.1: Self-Duality for the (2-)Category of Relations
- Subsection 8.5.2: Isomorphisms and Equivalences
-
Subsection 8.5.3: Internal Adjunctions
- Proposition 8.5.3.1.1: Adjunctions in $\boldsymbol {\mathsf{Rel}}$
- Subsection 8.5.4: Internal Monads
- Subsection 8.5.5: Internal Comonads
-
Subsection 8.5.6: Modules Over Internal Monads
- Proposition 8.5.6.1.1: Modules Over Internal Monads in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.7: Comodules Over Internal Comonads
- Proposition 8.5.7.1.1: Comodules Over Internal Comonads in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.8: Eilenberg–Moore and Kleisli Objects
- Proposition 8.5.8.1.1: Eilenberg–Moore and Kleisli Objects in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.9: Co/Monoids
- Remark 8.5.9.1.1: Co/Monoids in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.10: Monomorphisms and 2-Categorical Monomorphisms
- Explanation 8.5.10.1.1: Monomorphisms in $\mathsf{Rel}$
- Proposition 8.5.10.1.2: Characterisations of Monomorphisms in $\mathsf{Rel}$ I
- Proposition 8.5.10.1.3: Characterisations of Monomorphisms in $\mathsf{Rel}$ II
- Corollary 8.5.10.1.4: Characterisations of Monomorphisms in $\mathsf{Rel}$ III
- Corollary 8.5.10.1.5: Characterisations of Monomorphisms in $\mathsf{Rel}$ V
- Warning 8.5.10.1.6: Natural Conditions That Fail To Characterise Monomorphisms in $\mathsf{Rel}$
- Remark 8.5.10.1.7: Monomorphisms in $\mathsf{Rel}$ Give Rise to Antichains
- Proposition 8.5.10.1.8: Characterisations of 2-Categorical Monomorphisms in $\boldsymbol {\mathsf{Rel}}$ I
- Proposition 8.5.10.1.9: Characterisations of 2-Categorical Monomorphisms in $\boldsymbol {\mathsf{Rel}}$ II
-
Subsection 8.5.11: Epimorphisms and 2-Categorical Epimorphisms
- Explanation 8.5.11.1.1: Epimorphisms in $\mathsf{Rel}$
- Proposition 8.5.11.1.2: Characterisations of Epimorphisms in $\mathsf{Rel}$ I
- Proposition 8.5.11.1.3: Characterisations of Epimorphisms in $\mathsf{Rel}$ II
- Corollary 8.5.11.1.4: Characterisations of Epimorphisms in $\mathsf{Rel}$ III
- Corollary 8.5.11.1.5: Characterisations of Epimorphisms in $\mathsf{Rel}$ IV
- Corollary 8.5.11.1.6: Characterisations of Epimorphisms in $\mathsf{Rel}$ V
- Warning 8.5.11.1.7: Natural Conditions That Fail To Characterise Epimorphisms in $\mathsf{Rel}$
- Remark 8.5.11.1.8: Epimorphisms in $\mathsf{Rel}$ Give Rise to Antichains
- Proposition 8.5.11.1.9: Characterisations of 2-Categorical Epimorphisms in $\boldsymbol {\mathsf{Rel}}$ I
- Proposition 8.5.11.1.10: Characterisations of 2-Categorical Epimorphisms in $\boldsymbol {\mathsf{Rel}}$ II
-
Subsection 8.5.12: Retractions
- Proposition 8.5.12.1.1: Retractions in $\mathsf{Rel}$
-
Subsection 8.5.13: Sections
- Proposition 8.5.13.1.1: Sections in $\mathsf{Rel}$
-
Subsection 8.5.14: Co/Limits
- Proposition 8.5.14.1.1: Co/Limits in $\mathsf{Rel}$
-
Subsection 8.5.15: Internal Left Kan Extensions
- Proposition 8.5.15.1.1: Internal Left Kan Extensions in $\boldsymbol {\mathsf{Rel}}$
- Example 8.5.15.1.2: Internal Left Kan Extensions Along Functions
- Remark 8.5.15.1.3: Illustrating the Failure of Internal Left Kan Extensions in $\boldsymbol {\mathsf{Rel}}$ to Exist
- Question 8.5.15.1.4: Existence of Specific Internal Left Kan Extensions of Relations
-
Subsection 8.5.16: Internal Left Kan Lifts
- Proposition 8.5.16.1.1: Internal Left Kan Lifts in $\boldsymbol {\mathsf{Rel}}$
- Example 8.5.16.1.2: Internal Left Kan Lifts Along Functions
- Question 8.5.16.1.3: Existence of Specific Internal Left Kan Lifts of Relations
-
Subsection 8.5.17: Internal Right Kan Extensions
- Motivation 8.5.17.1.1: Setting for Internal Right Kan Extensions in $\boldsymbol {\mathsf{Rel}}$
- Proposition 8.5.17.1.2: Internal Right Kan Extensions in $\boldsymbol {\mathsf{Rel}}$
- Example 8.5.17.1.3: Examples of Internal Right Kan Extensions of Relations
- Proposition 8.5.17.1.4: Properties of Internal Right Kan Extensions in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.18: Internal Right Kan Lifts
- Motivation 8.5.18.1.1: Setting for Internal Right Kan Lifts in $\boldsymbol {\mathsf{Rel}}$
- Proposition 8.5.18.1.2: Internal Right Kan Lifts in $\boldsymbol {\mathsf{Rel}}$
- Example 8.5.18.1.3: Examples of Internal Right Kan Extensions of Relations
- Proposition 8.5.18.1.4: Properties of Internal Right Kan Lifts in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.19: Closedness
- Proposition 8.5.19.1.1: Closedness of $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.20: $\mathsf{Rel}$ as a Category of Free Algebras
- Proposition 8.5.20.1.1: $\mathsf{Rel}$ as a Category of Free Algebras
-
Subsection 8.5.1: Self-Duality
-
Section 8.6: Properties of the 2-Category of Relations With Apartness Composition
-
Subsection 8.6.1: Self-Duality
- Proposition 8.6.1.1.1: Self-Duality for the (2-)Category of Relations With Apartness Composition
-
Subsection 8.6.2: Isomorphisms and Equivalences
- Lemma 8.6.2.1.1: Conditions Involving a Relation and Its Converse II
- Remark 8.6.2.1.2: Unwinding Lemma 8.6.2.1.1
- Proposition 8.6.2.1.3: Isomorphisms and Equivalences in $\boldsymbol {\mathsf{Rel}}^{\mathord {\mathbin {\square }}}$
-
Subsection 8.6.3: Internal Adjunctions
- Proposition 8.6.3.1.1: Adjunctions in $\boldsymbol {\mathsf{Rel}}^{\mathord {\mathbin {\square }}}$
-
Subsection 8.6.4: Internal Monads
- Proposition 8.6.4.1.1: Internal Monads in $\boldsymbol {\mathsf{Rel}}^{\mathord {\mathbin {\square }}}$
- Subsection 8.6.5: Internal Comonads
- Subsection 8.6.6: Modules Over Internal Monads
- Subsection 8.6.7: Comodules Over Internal Comonads
- Subsection 8.6.8: Eilenberg–Moore and Kleisli Objects
- Subsection 8.6.9: Monomorphisms
- Subsection 8.6.10: 2-Categorical Monomorphisms
- Subsection 8.6.11: Epimorphisms
- Subsection 8.6.12: 2-Categorical Epimorphisms
- Subsection 8.6.13: Co/Limits
- Subsection 8.6.14: Internal Left Kan Extensions
- Subsection 8.6.15: Internal Left Kan Lifts
- Subsection 8.6.16: Internal Right Kan Extensions
- Subsection 8.6.17: Internal Right Kan Lifts
- Subsection 8.6.18: Coclosedness
-
Subsection 8.6.1: Self-Duality
-
Section 8.7: The Adjoint Pairs $R_{!}\dashv R_{-1}$ and $R^{-1}\dashv R_{*}$
- Subsection 8.7.1: Direct Images
- Subsection 8.7.2: Coinverse Images
-
Subsection 8.7.3: Inverse Images
- Definition 8.7.3.1.1: Inverse Images
- Remark 8.7.3.1.2: Unwinding Definition 8.7.3.1.1
- Proposition 8.7.3.1.3: Properties of Inverse Images I
- Proposition 8.7.3.1.4: Properties of Inverse Images II
- Subsection 8.7.4: Codirect Images
- Subsection 8.7.5: A Six-Functor Formalism for Sets, Part II
-
Subsection 8.7.6: Functoriality of Powersets
- Proposition 8.7.6.1.1: Functoriality of Powersets I
-
Subsection 8.7.7: Functoriality of Powersets: Relations on Powersets
- Definition 8.7.7.1.1: The Relation on Powersets Associated to a Relation
- Remark 8.7.7.1.2: Unwinding Definition 8.7.7.1.1
- Proposition 8.7.7.1.3: Functoriality of Powersets II
-
Section 8.8: The Left Skew Monoidal Structure on $\mathbf{Rel}(A,B)$
-
Subsection 8.8.1: The Left Skew Monoidal Product
- Definition 8.8.1.1.1: The Left $J$-Skew Monoidal Product of $\mathbf{Rel}(A,B)$
-
Subsection 8.8.2: The Left Skew Monoidal Unit
- Definition 8.8.2.1.1: The Left $J$-Skew Monoidal Unit of $\mathbf{Rel}(A,B)$
-
Subsection 8.8.3: The Left Skew Associators
- Definition 8.8.3.1.1: The Left $J$-Skew Associator of $\mathbf{Rel}(A,B)$
-
Subsection 8.8.4: The Left Skew Left Unitors
- Definition 8.8.4.1.1: The Left $J$-Skew Left Unitor of $\mathbf{Rel}(A,B)$
-
Subsection 8.8.5: The Left Skew Right Unitors
- Definition 8.8.5.1.1: The Left $J$-Skew Right Unitor of $\mathbf{Rel}(A,B)$
-
Subsection 8.8.6: The Left Skew Monoidal Structure on $\mathbf{Rel}(A,B)$
- Proposition 8.8.6.1.1: The Left $J$-Skew Monoidal Structure on $\mathbf{Rel}(A,B)$
-
Subsection 8.8.1: The Left Skew Monoidal Product
-
Section 8.9: The Right Skew Monoidal Structure on $\mathbf{Rel}(A,B)$
-
Subsection 8.9.1: The Right Skew Monoidal Product
- Definition 8.9.1.1.1: The Right $J$-Skew Monoidal Product of $\mathbf{Rel}(A,B)$
-
Subsection 8.9.2: The Right Skew Monoidal Unit
- Definition 8.9.2.1.1: The Right $J$-Skew Monoidal Unit of $\mathbf{Rel}(A,B)$
-
Subsection 8.9.3: The Right Skew Associators
- Definition 8.9.3.1.1: The Right $J$-Skew Associator of $\mathbf{Rel}(A,B)$
-
Subsection 8.9.4: The Right Skew Left Unitors
- Definition 8.9.4.1.1: The Right $J$-Skew Left Unitor of $\mathbf{Rel}(A,B)$
-
Subsection 8.9.5: The Right Skew Right Unitors
- Definition 8.9.5.1.1: The Right $J$-Skew Right Unitor of $\mathbf{Rel}(A,B)$
-
Subsection 8.9.6: The Right Skew Monoidal Structure on $\mathbf{Rel}(A,B)$
- Proposition 8.9.6.1.1: The Right $J$-Skew Monoidal Structure on $\mathbf{Rel}(A,B)$
-
Subsection 8.9.1: The Right Skew Monoidal Product