8 Relations
This chapter contains some material about relations. Notably, we discuss and explore:
-
1.
The definition of relations (Section 8.1.1).
-
2.
How relations may be viewed as decategorification of profunctors (Section 8.1.2).
-
3.
The various kinds of categories that relations form, namely:
-
(a)
A category (Section 8.3.2).
-
(b)
A monoidal category (Section 8.3.3).
-
(c)
A $2$-category (Section 8.3.4).
-
(d)
A double category (Section 8.3.5).
-
(a)
-
4.
The various categorical properties of the $2$-category of relations, including:
-
(a)
The self-duality of $\mathsf{Rel}$ and $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.1.1.1).
-
(b)
Identifications of equivalences and isomorphisms in $\boldsymbol {\mathsf{Rel}}$ with bijections (Proposition 8.4.2.1.1).
-
(c)
Identifications of adjunctions in $\boldsymbol {\mathsf{Rel}}$ with functions (Proposition 8.4.3.1.1).
-
(d)
Identifications of monads in $\boldsymbol {\mathsf{Rel}}$ with preorders (Proposition 8.4.4.1.1).
-
(e)
Identifications of comonads in $\boldsymbol {\mathsf{Rel}}$ with subsets (Proposition 8.4.5.1.1).
-
(f)
A description of the monoids and comonoids in $\boldsymbol {\mathsf{Rel}}$ with respect to the Cartesian product (Remark 8.4.6.1.1).
-
(g)
Characterisations of monomorphisms in $\mathsf{Rel}$ (Proposition 8.4.7.1.1).
-
(h)
Characterisations of $2$-categorical notions of monomorphisms in $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.8.1.1).
-
(i)
Characterisations of epimorphisms in $\mathsf{Rel}$ (Proposition 8.4.9.1.1).
-
(j)
Characterisations of $2$-categorical notions of epimorphisms in $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.10.1.1).
-
(k)
The partial co/completeness of $\mathsf{Rel}$ (Proposition 8.4.11.1.1).
-
(l)
The existence or non-existence of Kan extensions and Kan lifts in $\mathsf{Rel}$ (Remark 8.4.12.1.1).
-
(m)
The closedness of $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.13.1.1).
-
(n)
The identification of $\boldsymbol {\mathsf{Rel}}$ with the category of free algebras of the powerset monad on $\mathsf{Sets}$ (Proposition 8.4.14.1.1).
-
(a)
-
5.
The adjoint pairs
\begin{align*} R_{!} \dashv R_{-1} & \colon \mathcal{P}\webleft (A\webright ) \rightleftarrows \mathcal{P}\webleft (B\webright ),\\ R^{-1} \dashv R_{*} & \colon \mathcal{P}\webleft (B\webright ) \rightleftarrows \mathcal{P}\webleft (A\webright ) \end{align*}of functors (morphisms of posets) between $\mathcal{P}\webleft (A\webright )$ and $\mathcal{P}\webleft (B\webright )$ induced by a relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$, as well as the properties of $R_{!}$, $R_{-1}$, $R^{-1}$, and $R_{*}$ (Section 8.5).
Of particular note are the following points:
-
(a)
These two pairs of adjoint functors are the counterpart for relations of the adjoint triple $f_{!}\dashv f^{-1}\dashv f_{*}$ induced by a function $f\colon A\to B$ studied in Chapter 4: Constructions With Sets, Section 4.6.
-
(b)
We have $R_{-1}=R^{-1}$ iff $R$ is total and functional (Item 8 of Proposition 8.5.2.1.3).
-
(c)
As a consequence of the previous item, when $R$ comes from a function $f$, the pair of adjunctions
\[ R_{!}\dashv R_{-1}=R^{-1}\dashv R_{*} \]reduces to the triple adjunction
\[ f_{!}\dashv f^{-1}\dashv f_{*} \] -
(d)
The pairs $R_{!}\dashv R_{-1}$ and $R^{-1}\dashv R_{*}$ turn out to be rather important later on, as they appear in the definition and study of continuous, open, and closed relations between topological spaces (
,
).
-
(a)
-
6.
A description of two notions of “skew composition” on $\mathbf{Rel}\webleft (A,B\webright )$, giving rise to left and right skew monoidal structures analogous to the left skew monoidal structure on $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ appearing in the definition of a relative monad (Section 8.6 and Section 8.7).
TODO:
-
1.
Define apartness composition
-
2.
Revise Section 8.3
-
3.
Replicate Section 8.3 for apartness composition
-
4.
Revise Section 8.4
-
(a)
Add modules over monads in $\boldsymbol {\mathsf{Rel}}$
-
(b)
internal relations,
-
(c)
Co/limits in $\boldsymbol {\mathsf{Rel}}$.
-
(d)
Codensity monad $\operatorname {\mathrm{Ran}}_{J}\webleft (J\webright )$ of a relation (What about $\operatorname {\mathrm{Rift}}_{J}\webleft (J\webright )$?)
-
(i)
Density comonad $\operatorname {\mathrm{Lan}}_{J}\webleft (J\webright )$ of a relation when it exists (what about $\operatorname {\mathrm{Lift}}_{J}\webleft (J\webright )$?)
-
(i)
-
(e)
Fibrations in $\boldsymbol {\mathsf{Rel}}$, like discrete fibrations and Street fibrations
-
(a)
-
5.
Replicate Section 8.4 for apartness composition
-
6.
Revise Section 8.5
-
7.
Add subsection “A Six Functor Formalism for Sets, Part 2”, now with relations, building upon Section 8.5.
-
8.
Replicate Section 8.5 for apartness composition
-
9.
Revise sections on skew monoidal structures on $\mathbf{Rel}\webleft (A,B\webright )$
-
10.
Replicate the sections on skew monoidal structures on $\mathbf{Rel}\webleft (A,B\webright )$ for apartness composition.
-
11.
Explore relative co/monads in $\boldsymbol {\mathsf{Rel}}$, defined to be co/monoids in $\mathbf{Rel}\webleft (A,B\webright )$ with its left/right skew monoidal structures of Chapter 8: Relations, Section 8.6 and Section 8.7
-
12.
Consider adding the sections
-
•
The Monoidal Bicategory of Relations
-
•
The Monoidal Double Category of Relations
to Chapter 8: Relations .
-
•
- Section 8.1: Relations
- Section 8.2: Examples of Relations
-
Section 8.3: Categories of Relations
-
Subsection 8.3.1: The Category of Relations Between Two Sets
- Definition 8.3.1.1.1: The Category of Relations Between Two Sets
-
Subsection 8.3.2: The Category of Relations
- Definition 8.3.2.1.1: The Category of Relations
-
Subsection 8.3.3: The Closed Symmetric Monoidal Category of Relations
-
Subsubsection 8.3.3.1: The Monoidal Product
- Definition 8.3.3.1.1: The Monoidal Product of $\mathsf{Rel}$
-
Subsubsection 8.3.3.2: The Monoidal Unit
- Definition 8.3.3.2.1: The Monoidal Unit of $\mathsf{Rel}$
-
Subsubsection 8.3.3.3: The Associator
- Definition 8.3.3.3.1: The Associator of $\mathsf{Rel}$
-
Subsubsection 8.3.3.4: The Left Unitor
- Definition 8.3.3.4.1: The Left Unitor of $\mathsf{Rel}$
-
Subsubsection 8.3.3.5: The Right Unitor
- Definition 8.3.3.5.1: The Right Unitor of $\mathsf{Rel}$
-
Subsubsection 8.3.3.6: The Symmetry
- Definition 8.3.3.6.1: The Symmetry of $\mathsf{Rel}$
- Subsubsection 8.3.3.7: The Internal Hom
-
Subsubsection 8.3.3.8: The Closed Symmetric Monoidal Category of Relations
- Proposition 8.3.3.8.1: The Closed Symmetric Monoidal Category of Relations
-
Subsubsection 8.3.3.1: The Monoidal Product
-
Subsection 8.3.4: The $2$-Category of Relations
- Definition 8.3.4.1.1: The $2$-Category of Relations
-
Subsection 8.3.5: The Double Category of Relations
-
Subsubsection 8.3.5.1: The Double Category of Relations
- Definition 8.3.5.1.1: The Double Category of Relations
-
Subsubsection 8.3.5.2: Horizontal Identities
- Definition 8.3.5.2.1: The Horizontal Identities of $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.3: Horizontal Composition
- Definition 8.3.5.3.1: The Horizontal Composition of $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.4: Vertical Composition of 2-Morphisms
- Definition 8.3.5.4.1: The Vertical Composition of 2-Morphisms in $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.5: The Associators
- Definition 8.3.5.5.1: The Associators of $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.6: The Left Unitors
- Definition 8.3.5.6.1: The Left Unitors of $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.7: The Right Unitors
- Definition 8.3.5.7.1: The Right Unitors of $\mathsf{Rel}^{\mathsf{dbl}}$
-
Subsubsection 8.3.5.1: The Double Category of Relations
-
Subsection 8.3.1: The Category of Relations Between Two Sets
-
Section 8.4: Properties of the $2$-Category of Relations
-
Subsection 8.4.1: Self-Duality
- Proposition 8.4.1.1.1: Self-Duality for the (2-)Category of Relations
-
Subsection 8.4.2: Isomorphisms and Equivalences
- Proposition 8.4.2.1.1: Isomorphisms and Equivalences in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.4.3: Internal Adjunctions
- Proposition 8.4.3.1.1: Adjunctions in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.4.4: Internal Monads
- Proposition 8.4.4.1.1: Monads in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.4.5: Internal Comonads
- Proposition 8.4.5.1.1: Comonads in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.4.6: Co/Monoids
- Remark 8.4.6.1.1: Co/Monoids in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.4.7: Monomorphisms
- Proposition 8.4.7.1.1: Characterisations of Monomorphisms in $\mathsf{Rel}$
- Subsection 8.4.8: 2-Categorical Monomorphisms
-
Subsection 8.4.9: Epimorphisms
- Proposition 8.4.9.1.1: Characterisations of Epimorphisms in $\mathsf{Rel}$
-
Subsection 8.4.10: 2-Categorical Epimorphisms
- Proposition 8.4.10.1.1: 2-Categorical Epimorphisms in $\boldsymbol {\mathsf{Rel}}$
- Question 8.4.10.1.2: Better Characterisations of Corepresentably Full Morphisms in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.4.11: Co/Limits
- Proposition 8.4.11.1.1: Co/Limits in $\mathsf{Rel}$
-
Subsection 8.4.12: Internal Kan Extensions and Lifts
- Remark 8.4.12.1.1: Kan Extensions and Kan Lifts in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.4.13: Closedness
- Proposition 8.4.13.1.1: Closedness of $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.4.14: $\mathsf{Rel}$ as a Category of Free Algebras
- Proposition 8.4.14.1.1: $\mathsf{Rel}$ as a Category of Free Algebras
-
Subsection 8.4.1: Self-Duality
-
Section 8.5: The Adjoint Pairs $R_{!}\dashv R_{-1}$ and $R^{-1}\dashv R_{*}$
-
Subsection 8.5.1: Direct Images
- Definition 8.5.1.1.1: Direct Images
- Remark 8.5.1.1.2: Unwinding Definition 8.5.1.1.1
- Proposition 8.5.1.1.3: Properties of Direct Image Functions
- Proposition 8.5.1.1.4: Properties of the Direct Image Function Operation
-
Subsection 8.5.2: Strong Inverse Images
- Definition 8.5.2.1.1: Strong Inverse Images
- Remark 8.5.2.1.2: Unwinding Definition 8.5.2.1.1
- Proposition 8.5.2.1.3: Properties of Strong Inverse Images
- Proposition 8.5.2.1.4: Properties of the Strong Inverse Image Function Operation
-
Subsection 8.5.3: Weak Inverse Images
- Definition 8.5.3.1.1: Weak Inverse Images
- Remark 8.5.3.1.2: Unwinding Definition 8.5.3.1.1
- Proposition 8.5.3.1.3: Properties of Weak Inverse Image Functions
- Proposition 8.5.3.1.4: Properties of the Weak Inverse Image Function Operation
-
Subsection 8.5.4: Codirect Images
- Definition 8.5.4.1.1: Codirect Images
- Remark 8.5.4.1.2: Unwinding Definition 8.5.4.1.1
- Proposition 8.5.4.1.3: Properties of Codirect Images
- Proposition 8.5.4.1.4: Properties of the Codirect Image Function Operation
-
Subsection 8.5.5: Functoriality of Powersets
- Proposition 8.5.5.1.1: Functoriality of Powersets I
-
Subsection 8.5.6: Functoriality of Powersets: Relations on Powersets
- Definition 8.5.6.1.1: The Relation on Powersets Associated to a Relation
- Remark 8.5.6.1.2: Unwinding Definition 8.5.6.1.1
- Proposition 8.5.6.1.3: Functoriality of Powersets II
-
Subsection 8.5.1: Direct Images
-
Section 8.6: The Left Skew Monoidal Structure on $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.6.1: The Left Skew Monoidal Product
- Definition 8.6.1.1.1: The Left $J$-Skew Monoidal Product of $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.6.2: The Left Skew Monoidal Unit
- Definition 8.6.2.1.1: The Left $J$-Skew Monoidal Unit of $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.6.3: The Left Skew Associators
- Definition 8.6.3.1.1: The Left $J$-Skew Associator of $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.6.4: The Left Skew Left Unitors
- Definition 8.6.4.1.1: The Left $J$-Skew Left Unitor of $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.6.5: The Left Skew Right Unitors
- Definition 8.6.5.1.1: The Left $J$-Skew Right Unitor of $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.6.6: The Left Skew Monoidal Structure on $\mathbf{Rel}\webleft (A,B\webright )$
- Proposition 8.6.6.1.1: The Left $J$-Skew Monoidal Structure on $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.6.1: The Left Skew Monoidal Product
-
Section 8.7: The Right Skew Monoidal Structure on $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.7.1: The Right Skew Monoidal Product
- Definition 8.7.1.1.1: The Right $J$-Skew Monoidal Product of $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.7.2: The Right Skew Monoidal Unit
- Definition 8.7.2.1.1: The Right $J$-Skew Monoidal Unit of $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.7.3: The Right Skew Associators
- Definition 8.7.3.1.1: The Right $J$-Skew Associator of $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.7.4: The Right Skew Left Unitors
- Definition 8.7.4.1.1: The Right $J$-Skew Left Unitor of $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.7.5: The Right Skew Right Unitors
- Definition 8.7.5.1.1: The Right $J$-Skew Right Unitor of $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.7.6: The Right Skew Monoidal Structure on $\mathbf{Rel}\webleft (A,B\webright )$
- Proposition 8.7.6.1.1: The Right $J$-Skew Monoidal Structure on $\mathbf{Rel}\webleft (A,B\webright )$
-
Subsection 8.7.1: The Right Skew Monoidal Product