The right $J$-skew monoidal product of $\mathbf{Rel}(A,B)$ is the functor
\[ \rhd _{J}\colon \mathbf{Rel}(A,B)\times \mathbf{Rel}(A,B) \to \mathbf{Rel}(A,B) \]
where
-
•
Action on Objects. For each $R,S\in \operatorname {\mathrm{Obj}}(\mathbf{Rel}(A,B))$, we have
-
•
Action on Morphisms. For each $R,S,R',S'\in \operatorname {\mathrm{Obj}}(\mathbf{Rel}(A,B))$, the action on $\operatorname {\mathrm{Hom}}$-sets
\[ (\rhd _{J})_{(S,R),(S',R')} \colon \operatorname {\mathrm{Hom}}_{\mathbf{Rel}(A,B)}(S,S')\times \operatorname {\mathrm{Hom}}_{\mathbf{Rel}(A,B)}(R,R') \to \operatorname {\mathrm{Hom}}_{\mathbf{Rel}(A,B)}(S\rhd _{J}R,S'\rhd _{J}R') \]for each $\beta \in \operatorname {\mathrm{Hom}}_{\mathbf{Rel}(A,B)}(S,S')$ and each $\alpha \in \operatorname {\mathrm{Hom}}_{\mathbf{Rel}(A,B)}(R,R')$.
- 1Since $\mathbf{Rel}(A,B)$ is posetal, this is to say that if $S\subset S'$ and $R\subset R'$, then $S\rhd _{J}R\subset S'\rhd _{J}R'$.