8.3.5 The Double Category of Relations

8.3.5.1 The Double Category of Relations

The double category of relations is the locally posetal double category $\smash {\mathsf{Rel}^{\mathsf{dbl}}}$ where

  • Objects. The objects of $\mathsf{Rel}^{\mathsf{dbl}}$ are sets.

  • Vertical Morphisms. The vertical morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$ are maps of sets $f\colon A\to B$.

  • Horizontal Morphisms. The horizontal morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$ are relations $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X$.

  • 2-Morphisms. A 2-cell

    of $\mathsf{Rel}^{\mathsf{dbl}}$ is either non-existent or an inclusion of relations of the form

  • Horizontal Identities. The horizontal unit functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor of Definition 8.3.5.2.1.

  • Vertical Identities. For each $A\in \operatorname {\mathrm{Obj}}(\mathsf{Rel}^{\mathsf{dbl}})$, we have

    \[ \operatorname {\mathrm{id}}^{\mathsf{Rel}^{\mathsf{dbl}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{A}. \]
  • Identity 2-Morphisms. For each horizontal morphism $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ of $\mathsf{Rel}^{\mathsf{dbl}}$, the identity 2-morphism

    of $R$ is the identity inclusion

  • Horizontal Composition. The horizontal composition functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor of Definition 8.3.5.3.1.

  • Vertical Composition of $1$-Morphisms. For each composable pair $A\smash {\overset {F}{\to }}B\smash {\overset {G}{\to }}C$ of vertical morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. maps of sets, we have

    \[ g\mathbin {{\circ }^{\mathsf{Rel}^{\mathsf{dbl}}}}f \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g\circ f. \]
  • Vertical Composition of 2-Morphisms. The vertical composition of 2-morphisms in $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 8.3.5.4.1.

  • Associators. The associators of $\mathsf{Rel}^{\mathsf{dbl}}$ are defined as in Definition 8.3.5.5.1.

  • Left Unitors. The left unitors of $\mathsf{Rel}^{\mathsf{dbl}}$ are defined as in Definition 8.3.5.6.1.

  • Right Unitors. The right unitors of $\mathsf{Rel}^{\mathsf{dbl}}$ are defined as in Definition 8.3.5.7.1.

8.3.5.2 Horizontal Identities

The horizontal unit functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor

\[ \mathbb {1}^{\mathsf{Rel}^{\mathsf{dbl}}} \colon \mathsf{Rel}^{\mathsf{dbl}}_{0} \to \mathsf{Rel}^{\mathsf{dbl}}_{1} \]

of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor where

  • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}(\mathsf{Rel}^{\mathsf{dbl}}_{0})$, we have

    \[ \mathbb {1}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{A}(-_{1},-_{2}). \]
  • Action on Morphisms. For each vertical morphism $f\colon A\to B$ of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. each map of sets $f$ from $A$ to $B$, the identity 2-morphism

    of $f$ is the inclusion
    of Chapter 4: Constructions With Sets, Item 1 of Proposition 4.5.3.1.3.

8.3.5.3 Horizontal Composition

The horizontal composition functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor

\[ \mathbin {\odot }^{\mathsf{Rel}^{\mathsf{dbl}}} \colon \mathsf{Rel}^{\mathsf{dbl}}_{1}\operatorname*{\mathbin {\times }}_{\mathsf{Rel}^{\mathsf{dbl}}_{0}}\mathsf{Rel}^{\mathsf{dbl}}_{1} \to \mathsf{Rel}^{\mathsf{dbl}}_{1} \]

of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor where

  • Action on Objects. For each composable pair $\smash {A\mathbin {\overset {R}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}B\mathbin {\overset {S}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}C}$ of horizontal morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, we have

    \[ S\mathbin {\odot }R\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S\mathbin {\diamond }R, \]

    where $S\mathbin {\diamond }R$ is the composition of $R$ and $S$ of Definition 8.1.3.1.1.

  • Action on Morphisms. For each horizontally composable pair

    of 2-morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. for each pair
    of inclusions of relations, the horizontal composition
    of $\alpha $ and $\beta $ is the inclusion of relations

Proof of the Inclusion in Definition 8.3.5.3.1.

The inclusion of relations

\[ (U\mathbin {\diamond }T)\circ (f\times h)\subset (S\mathbin {\diamond }R) \]

follows from the fact that the statement

  • We have $a\sim _{(U\mathbin {\diamond }T)\circ (f\times h)}c$, i.e. $f(a)\sim _{U\mathbin {\diamond }T}h(c)$, i.e. there exists some $y\in Y$ such that:

    • We have $f(a)\sim _{T}y$.

    • We have $y\sim _{U}h(c)$.

is implied by the statement

  • We have $a\sim _{S\mathbin {\diamond }R}c$, i.e. there exists some $b\in B$ such that:

    • We have $a\sim _{R}b$.

    • We have $b\sim _{S}c$.

since:

  • If $a\sim _{R}b$, then $f(a)\sim _{T}g(b)$, as $T\circ (f\times g)\subset R$;

  • If $b\sim _{S}c$, then $g(b)\sim _{U}h(c)$, as $U\circ (g\times h)\subset S$.

This finishes the proof.

8.3.5.4 Vertical Composition of 2-Morphisms

The vertical composition in $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as follows: for each vertically composable pair

of 2-morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. for each each pair
of inclusions of relations, we define the vertical composition
of $\alpha $ and $\beta $ as the inclusion of relations
given by the pasting of inclusions

Proof of the Inclusion in Definition 8.3.5.4.1.

The inclusion

\[ T\circ [(h\circ f)\times (k\circ g)]\subset R \]

follows from the fact that, given $(a,x)\in A\times X$, the statement

  • We have $h(f(a))\sim _{T}k(g(x))$;

is implied by the statement

  • We have $a\sim _{R}x$;

since

  • If $a\sim _{R}x$, then $f(a)\sim _{S}g(x)$, as $S\circ (f\times g)\subset R$;

  • If $b\sim _{S}y$, then $h(b)\sim _{T}k(y)$, as $T\circ (h\times k)\subset S$, and thus, in particular:

    • If $f(a)\sim _{S}g(x)$, then $h(f(a))\sim _{T}k(g(x))$.

This finishes the proof.

8.3.5.5 The Associators

For each composable triple

\[ A\mathbin {\overset {R}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}B\mathbin {\overset {S}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}C\mathbin {\overset {T}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}D \]

of horizontal morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, the component

of the associator of $\mathsf{Rel}^{\mathsf{dbl}}$ at $(R,S,T)$ is the identity inclusion1


  1. 1As proved in Item 2 of Proposition 8.1.3.1.4.

8.3.5.6 The Left Unitors

For each horizontal morphism $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ of $\mathsf{Rel}^{\mathsf{dbl}}$, the component

of the left unitor of $\mathsf{Rel}^{\mathsf{dbl}}$ at $R$ is the identity inclusion1


  1. 1As proved in Item 3 of Proposition 8.1.3.1.4.

8.3.5.7 The Right Unitors

For each horizontal morphism $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ of $\mathsf{Rel}^{\mathsf{dbl}}$, the component

of the right unitor of $\mathsf{Rel}^{\mathsf{dbl}}$ at $R$ is the identity inclusion1


  1. 1As proved in Item 3 of Proposition 8.1.3.1.4.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: