8.3.5.1 The Double Category of Relations

The double category of relations is the locally posetal double category $\smash {\mathsf{Rel}^{\mathsf{dbl}}}$ where

  • Objects. The objects of $\mathsf{Rel}^{\mathsf{dbl}}$ are sets.

  • Vertical Morphisms. The vertical morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$ are maps of sets $f\colon A\to B$.

  • Horizontal Morphisms. The horizontal morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$ are relations $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X$.

  • $2$-Morphisms. A $2$-cell

    of $\mathsf{Rel}^{\mathsf{dbl}}$ is either non-existent or an inclusion of relations of the form

  • Horizontal Identities. The horizontal unit functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor of Definition 8.3.5.2.1.

  • Vertical Identities. For each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Rel}^{\mathsf{dbl}}\webright )$, we have

    \[ \operatorname {\mathrm{id}}^{\mathsf{Rel}^{\mathsf{dbl}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{A}. \]
  • Identity $2$-Morphisms. For each horizontal morphism $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ of $\mathsf{Rel}^{\mathsf{dbl}}$, the identity $2$-morphism

    of $R$ is the identity inclusion

  • Horizontal Composition. The horizontal composition functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor of Definition 8.3.5.3.1.

  • Vertical Composition of $1$-Morphisms. For each composable pair $A\smash {\overset {F}{\to }}B\smash {\overset {G}{\to }}C$ of vertical morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. maps of sets, we have

    \[ g\mathbin {{\circ }^{\mathsf{Rel}^{\mathsf{dbl}}}}f \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g\circ f. \]
  • Vertical Composition of $2$-Morphisms. The vertical composition of $2$-morphisms in $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 8.3.5.4.1.

  • Associators. The associators of $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 8.3.5.5.1.

  • Left Unitors. The left unitors of $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 8.3.5.6.1.

  • Right Unitors. The right unitors of $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 8.3.5.7.1.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: