8.3.5.3 Horizontal Composition

The horizontal composition functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor

\[ \mathbin {\odot }^{\mathsf{Rel}^{\mathsf{dbl}}} \colon \mathsf{Rel}^{\mathsf{dbl}}_{1}\operatorname*{\mathbin {\times }}_{\mathsf{Rel}^{\mathsf{dbl}}_{0}}\mathsf{Rel}^{\mathsf{dbl}}_{1} \to \mathsf{Rel}^{\mathsf{dbl}}_{1} \]

of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor where

  • Action on Objects. For each composable pair $\smash {A\mathbin {\overset {R}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}B\mathbin {\overset {S}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}C}$ of horizontal morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, we have

    \[ S\mathbin {\odot }R\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S\mathbin {\diamond }R, \]

    where $S\mathbin {\diamond }R$ is the composition of $R$ and $S$ of Definition 8.1.3.1.1.

  • Action on Morphisms. For each horizontally composable pair

    of 2-morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. for each pair
    of inclusions of relations, the horizontal composition
    of $\alpha $ and $\beta $ is the inclusion of relations

Proof of the Inclusion in Definition 8.3.5.3.1.

The inclusion of relations

\[ (U\mathbin {\diamond }T)\circ (f\times h)\subset (S\mathbin {\diamond }R) \]

follows from the fact that the statement

  • We have $a\sim _{(U\mathbin {\diamond }T)\circ (f\times h)}c$, i.e. $f(a)\sim _{U\mathbin {\diamond }T}h(c)$, i.e. there exists some $y\in Y$ such that:

    • We have $f(a)\sim _{T}y$.

    • We have $y\sim _{U}h(c)$.

is implied by the statement

  • We have $a\sim _{S\mathbin {\diamond }R}c$, i.e. there exists some $b\in B$ such that:

    • We have $a\sim _{R}b$.

    • We have $b\sim _{S}c$.

since:

  • If $a\sim _{R}b$, then $f(a)\sim _{T}g(b)$, as $T\circ (f\times g)\subset R$;

  • If $b\sim _{S}c$, then $g(b)\sim _{U}h(c)$, as $U\circ (g\times h)\subset S$.

This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: