8.7.6 Functoriality of Powersets

The assignment $X\mapsto \mathcal{P}(X)$ defines functors1

\begin{align*} \mathcal{P}_{!} & \colon \mathrm{Rel}\to \mathsf{Sets},\\ \mathcal{P}_{-1} & \colon \mathrm{Rel}^{\mathsf{op}} \to \mathsf{Sets},\\ \mathcal{P}^{-1} & \colon \mathrm{Rel}^{\mathsf{op}} \to \mathsf{Sets},\\ \mathcal{P}_{*} & \colon \mathrm{Rel}\to \mathsf{Sets}\end{align*}

where

  • Action on Objects. For each $X\in \operatorname {\mathrm{Obj}}(\mathrm{Rel})$, we have

    \begin{align*} \mathcal{P}_{!}(X) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}(X),\\ \mathcal{P}_{-1}(X) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}(X),\\ \mathcal{P}^{-1}(X) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}(X),\\ \mathcal{P}_{*}(X) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}(X).\end{align*}
  • Action on Morphisms. For each morphism $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y$ of $\mathrm{Rel}$, the images

    \begin{align*} \mathcal{P}_{!}(R) & \colon \mathcal{P}(X) \to \mathcal{P}(Y),\\ \mathcal{P}_{-1}(R) & \colon \mathcal{P}(Y) \to \mathcal{P}(X),\\ \mathcal{P}^{-1}(R) & \colon \mathcal{P}(Y) \to \mathcal{P}(X),\\ \mathcal{P}_{*}(R) & \colon \mathcal{P}(X) \to \mathcal{P}(Y)\end{align*}

    of $R$ by $\mathcal{P}_{!}$, $\mathcal{P}_{-1}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{*}$ are defined by

    \begin{align*} \mathcal{P}_{!}(R) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R_{!},\\ \mathcal{P}_{-1}(R) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R_{-1},\\ \mathcal{P}^{-1}(R) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R^{-1},\\ \mathcal{P}_{*}(R) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R_{*},\end{align*}

    as in Definition 8.7.1.1.1, Definition 8.7.2.1.1, Definition 8.7.3.1.1, and Definition 8.7.4.1.1.


  1. 1The functor $\mathcal{P}_{!}\colon \mathrm{Rel}\to \mathsf{Sets}$ in particular admits a left adjoint; see Item 2 of Proposition 8.2.2.1.2.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: