8.1.1 Foundations

    Let $A$ and $B$ be sets.

    A relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ from $A$ to $B$1,2 is equivalently:

    1. 1.

      A subset $R$ of $A\times B$.

  • 2.

    A function from $A\times B$ to $\{ \mathsf{true},\mathsf{false}\} $.

  • 3.

    A function from $A$ to $\mathcal{P}(B)$.

  • 4.

    A function from $B$ to $\mathcal{P}(A)$.

  • 5.

    A cocontinuous morphism of posets from $(\mathcal{P}(A),\subset )$ to $(\mathcal{P}(B),\subset )$.

  • 6.

    A continuous morphism of posets from $(\mathcal{P}(B),\supset )$ to $(\mathcal{P}(A),\supset )$.


    1. 1Further Terminology: Also called a multivalued function from $A$ to $B$.
    2. 2Further Terminology: When $A=B$, we also call $R\subset A\times A$ a relation on $A$.

    Proof of the Equivalences in Definition 8.1.1.1.1.

    We may think of a relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ as a function from $A$ to $B$ that is multivalued, assigning to each element $a$ in $A$ a set $R(a)$ of elements of $B$, thought of as the set of values of $R$ at $a$.

    Note that this includes also the possibility of $R$ having no value at all on a given $a\in A$ when $R(a)=\text{Ø}$.

    Another way of stating the equivalence between Item 1, Item 2, Item 3, Item 4, and Item 5 of Definition 8.1.1.1.1 is by saying that we have bijections of sets

    \begin{align*} \left\{ \text{relations from $A$ to $B$}\right\} & \cong \mathcal{P}(A\times B)\\ & \cong \mathsf{Sets}(A\times B,\{ \mathsf{true},\mathsf{false}\} )\\ & \cong \mathsf{Sets}(A,\mathcal{P}(B))\\ & \cong \mathsf{Sets}(B,\mathcal{P}(A))\\ & \cong \mathsf{Pos}^{\style {display: inline-block; transform: rotate(180deg)}{\mathcal{C}}\mkern -2.5mu}(\mathcal{P}(A),\mathcal{P}(B))\\ & \cong \mathsf{Pos}^{\mathcal{C}}(\mathcal{P}(B),\mathcal{P}(A)) \end{align*}

    natural in $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, where $\mathcal{P}(A)$ and $\mathcal{P}(B)$ are endowed with the poset structure given by inclusion.

    Proof of the Equivalences in Definition 8.1.1.1.1.

    We claim that Item 1, Item 2, Item 3, Item 4, and Item 5 are indeed equivalent:

    This finishes the proof.

    Let $A$ and $B$ be sets and let $R\colon \mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation from $A$ to $B$.

    1. 1.

      We write $\mathrm{Rel}(A,B)$ for the set of relations from $A$ to $B$.

    2. 2.

      We write $\mathbf{Rel}(A,B)$ for the sub-poset of $(\mathcal{P}(A\times B),\subset )$ spanned by the relations from $A$ to $B$.

    3. 3.

      Given $a\in A$ and $b\in B$, we write $a\sim _{R}b$ to mean $(a,b)\in R$.

    4. 4.

      When viewing $R$ as a function

      \[ R\colon A\times B\to \{ \mathsf{t},\mathsf{f}\} , \]

      we write $R^{b}_{a}$ for the value of $R$ at $(a,b)$.1


    1. 1The choice to write $R^{b}_{a}$ in place of $R^{a}_{b}$ is to keep the notation consistent with the notation we will later employ for profunctors in Unresolved reference.

    Let $A$ and $B$ be sets and let $R,S\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be relations.

    1. 1.

      End Formula for the Set of Inclusions of Relations. We have

      \[ \operatorname {\mathrm{Hom}}_{\mathbf{Rel}(A,B)}(R,S)\cong \int _{a\in A}\int _{b\in B}\operatorname {\mathrm{Hom}}_{\{ \mathsf{t},\mathsf{f}\} }(R^{b}_{a},S^{b}_{a}). \]

    Item 1: End Formula for the Set of Inclusions of Relations
    Unwinding the expression inside the end on the right hand side, we have

    \[ \int _{a\in A}\int _{b\in B}\operatorname {\mathrm{Hom}}_{\{ \mathsf{t},\mathsf{f}\} }(R^{b}_{a},S^{b}_{a})\cong \begin{cases} \mathrm{pt}& \text{if, for each $a\in A$ and each $b\in B$,}\\ & \text{we have $\operatorname {\mathrm{Hom}}_{\{ \mathsf{t},\mathsf{f}\} }(R^{b}_{a},S^{b}_{a})\cong \mathrm{pt}$}\\ \text{Ø}& \text{otherwise.}\end{cases} \]

    Since we have $\operatorname {\mathrm{Hom}}_{\{ \mathsf{t},\mathsf{f}\} }(R^{b}_{a},S^{b}_{a})=\left\{ \mathsf{true}\right\} \cong \mathrm{pt}$ exactly when $R^{b}_{a}=\mathsf{false}$ or $R^{b}_{a}=S^{b}_{a}=\mathsf{true}$, we get

    \[ \int _{a\in A}\int _{b\in B}\operatorname {\mathrm{Hom}}_{\{ \mathsf{t},\mathsf{f}\} }(R^{b}_{a},S^{b}_{a})\cong \begin{cases} \mathrm{pt}& \text{if, for each $a\in A$ and each $b\in B$,}\\ & \text{if $a\sim _{R}b$, then $a\sim _{S}b$,}\\ \text{Ø}& \text{otherwise.}\end{cases} \]

    On the left hand-side, we have

    \[ \operatorname {\mathrm{Hom}}_{\mathbf{Rel}(A,B)}(R,S)\cong \begin{cases} \mathrm{pt}& \text{if $R\subset S$,}\\ \text{Ø}& \text{otherwise.}\end{cases} \]

    Since $(a\sim _{R}b\implies a\sim _{S}b)$ iff $R\subset S$, the two sets above are isomorphic. This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: