4.5.1 The Characteristic Function of a Subset

    Let $X$ be a set and let $U\in \mathcal{P}\webleft (X\webright )$.

    The characteristic function of $U$1 is the function$\chi _{U}\colon X\to \{ \mathsf{t},\mathsf{f}\} $2 defined by

    \[ \chi _{U}\webleft (x\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $x\in U$,}\\ \mathsf{false}& \text{if $x\not\in U$} \end{cases} \]

    for each $x\in X$.


    1. 1Further Terminology: Also called the indicator function of $U$.
    2. 2Further Notation: Also written $\chi _{X}\webleft (U,-\webright )$ or $\chi _{X}\webleft (-,U\webright )$.

    Under the analogy that $\{ \mathsf{t},\mathsf{f}\} $ should be the $\webleft (-1\webright )$-categorical analogue of $\mathsf{Sets}$, we may view a function

    \[ f\colon X\to \{ \mathsf{t},\mathsf{f}\} \]

    as a decategorification of presheaves and copresheaves

    \begin{gather*} \mathcal{F} \colon \mathcal{C}^{\mathsf{op}} \to \mathsf{Sets},\\ F \colon \mathcal{C} \to \mathsf{Sets}.\end{gather*}

    The characteristic functions $\chi _{U}$ of the subsets of $X$ are then the primordial examples of such functions (and, in fact, all of them).

    Let $X$ be a set.

    1. 1.

      Functionality. The assignment $U\mapsto \chi _{U}$ defines a function

      \[ \chi _{\webleft (-\webright )}\colon \mathcal{P}\webleft (X\webright )\to \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ). \]
    2. 2.

      Bijectivity. The function $\chi _{\webleft (-\webright )}$ from Item 1 is bijective.

  • 3.

    Naturality. The collection

    \[ \left\{ \chi _{\webleft (-\webright )}\colon \mathcal{P}\webleft (X\webright )\to \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )\right\} _{X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )} \]

    defines a natural isomorphism between $\mathcal{P}^{-1}$ and $\mathsf{Sets}\webleft (-,\{ \mathsf{t},\mathsf{f}\} \webright )$. In particular, given a function $f\colon X\to Y$, the diagram

    commutes, i.e. we have

    \[ \chi _{V}\circ f=\chi _{f^{-1}\webleft (V\webright )} \]

    for each $V\in \mathcal{P}\webleft (Y\webright )$.

  • 4.

    Interaction With Unions I. We have

    \[ \chi _{U\cup V}=\operatorname*{\operatorname {\mathrm{max}}}\webleft (\chi _{U},\chi _{V}\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 5.

    Interaction With Unions II. We have

    \[ \chi _{U\cup V}=\chi _{U}+\chi _{V}-\chi _{U\cap V} \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 6.

    Interaction With Intersections I. We have

    \[ \chi _{U\cap V}=\chi _{U}\chi _{V} \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 7.

    Interaction With Intersections II. We have

    \[ \chi _{U\cap V}=\operatorname*{\operatorname {\mathrm{min}}}\webleft (\chi _{U},\chi _{V}\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 8.

    Interaction With Differences. We have

    \[ \chi _{U\setminus V}=\chi _{U}-\chi _{U\cap V} \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 9.

    Interaction With Complements. We have

    \[ \chi _{U^{\textsf{c}}}\equiv 1-\chi _{U}\ \ (\mathrm{mod}\ 2) \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  • 10.

    Interaction With Symmetric Differences. We have

    \[ \chi _{U\mathbin {\triangle }V}=\chi _{U}+\chi _{V}-2\chi _{U\cap V} \]

    and thus, in particular, we have

    \[ \chi _{U\mathbin {\triangle }V}\equiv \chi _{U}+\chi _{V}\ \ (\mathrm{mod}\ 2) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 11.

    Interaction With Internal Homs. We have

    \[ \chi _{\webleft [U,V\webright ]_{\mathcal{P}\webleft (X\webright )}}=\operatorname*{\operatorname {\mathrm{max}}}\webleft (1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  • Item 1: Functionality
    There is nothing to prove.

    Item 2: Bijectivity
    We proceed in three steps:

    1. 1.

      The Inverse of $\chi _{\webleft (-\webright )}$. The inverse of $\chi _{\webleft (-\webright )}$ is the map

      \[ \Phi \colon \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ) \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathcal{P}\webleft (X\webright ), \]

      defined by

      \begin{align*} \Phi \webleft (f\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U_{f}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{-1}\webleft (\mathsf{true}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ f\webleft (x\webright )=\mathsf{true}\right\} \end{align*}

      for each $f\in \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )$.

    2. 2.

      Invertibility I. We have

      \begin{align*} \webleft [\Phi \circ \chi _{\webleft (-\webright )}\webright ]\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi \webleft (\chi _{U}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi ^{-1}_{U}\webleft (\mathsf{true}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \chi _{U}\webleft (x\webright )=\mathsf{true}\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ x\in U\right\} \\ & = U\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\operatorname {\mathrm{id}}_{\mathcal{P}\webleft (X\webright )}\webright ]\webleft (U\webright ) \end{align*}

      for each $U\in \mathcal{P}\webleft (X\webright )$. Thus, we have

      \[ \Phi \circ \chi _{\webleft (-\webright )}=\operatorname {\mathrm{id}}_{\mathcal{P}\webleft (X\webright )}. \]
    3. 3.

      Invertibility II. We have

      \begin{align*} \webleft [\chi _{\webleft (-\webright )}\circ \Phi \webright ]\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{\Phi \webleft (f\webright )}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{f^{-1}\webleft (\mathsf{true}\webright )}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[x\mapsto \begin{cases} \mathsf{true}& \text{if $x\in f^{-1}\webleft (\mathsf{true}\webright )$}\\ \mathsf{false}& \text{otherwise}\end{cases}]\mspace {-3mu}]\\ & = [\mspace {-3mu}[x\mapsto f\webleft (x\webright )]\mspace {-3mu}]\\ & = f\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\operatorname {\mathrm{id}}_{\mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )}\webright ]\webleft (f\webright ) \end{align*}

      for each $f\in \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )$. Thus, we have

      \[ \chi _{\webleft (-\webright )}\circ \Phi =\operatorname {\mathrm{id}}_{\mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )}. \]

    This finishes the proof.

    Item 3: Naturality
    We proceed in two steps:

    1. 1.

      Naturality of $\chi _{\webleft (-\webright )}$. We have

      \begin{align*} \webleft [\chi _{V}\circ f\webright ]\webleft (v\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{V}\webleft (f\webleft (v\webright )\webright )\\ & = \begin{cases} \mathsf{true}& \text{if $f\webleft (v\webright )\in V$,}\\ \mathsf{false}& \text{otherwise} \end{cases}\\ & = \begin{cases} \mathsf{true}& \text{if $v\in f^{-1}\webleft (V\webright )$,}\\ \mathsf{false}& \text{otherwise} \end{cases}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{f^{-1}\webleft (V\webright )}\webleft (v\webright )\end{align*}

      for each $v\in V$.

    2. 2.

      Naturality of $\Phi $. Since $\chi _{\webleft (-\webright )}$ is natural and a componentwise inverse to $\Phi $, it follows from Chapter 11: Categories, Item 2 of Proposition 11.9.7.1.2 that $\Phi $ is also natural in each argument.

    This finishes the proof.

    Item 4: Interaction With Unions I
    This is a repetition of Item 10 of Proposition 4.3.8.1.2 and is proved there.

    Item 5: Interaction With Unions II
    This is a repetition of Item 11 of Proposition 4.3.8.1.2 and is proved there.

    Item 6: Interaction With Intersections I
    This is a repetition of Item 10 of Proposition 4.3.9.1.2 and is proved there.

    Item 7: Interaction With Intersections II
    This is a repetition of Item 11 of Proposition 4.3.9.1.2 and is proved there.

    Item 8: Interaction With Differences
    This is a repetition of Item 16 of Proposition 4.3.10.1.2 and is proved there.

    Item 9: Interaction With Complements
    This is a repetition of Item 4 of Proposition 4.3.11.1.2 and is proved there.

    Item 10: Interaction With Symmetric Differences
    This is a repetition of Item 15 of Proposition 4.3.12.1.2 and is proved there.

    Item 11: Interaction With Internal Homs
    This is a repetition of Item 17 of Proposition 4.4.7.1.3 and is proved there.

    The bijection

    \[ \mathcal{P}\webleft (X\webright )\cong \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ) \]

    of Item 2 of Proposition 4.5.1.1.4, which

    • Takes a subset $U\hookrightarrow X$ of $X$ and straightens it to a function $\chi _{U}\colon X\to \{ \mathsf{true},\mathsf{false}\} $;

    • Takes a function $f\colon X\to \{ \mathsf{true},\mathsf{false}\} $ and unstraightens it to a subset $f^{-1}\webleft (\mathsf{true}\webright )\hookrightarrow X$ of $X$;

    may be viewed as the $\webleft (-1\webright )$-categorical version of the 0-categorical un/straightening isomorphism between indexed and fibred sets

    \[ \underbrace{\mathsf{FibSets}_{X}}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Sets}_{/X}}\cong \underbrace{\mathsf{ISets}_{X}}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Fun}\webleft (X_{\mathsf{disc}},\mathsf{Sets}\webright )} \]

    of Unresolved reference, Unresolved reference. Here we view:

    • Subsets $U\hookrightarrow X$ as being analogous to $X$-fibred sets $\phi _{X}\colon A\to X$.

    • Functions $f\colon X\to \{ \mathsf{t},\mathsf{f}\} $ as being analogous to $X$-indexed sets $A\colon X_{\mathsf{disc}}\to \mathsf{Sets}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: