4.3.12 Symmetric Differences

    Let $X$ be a set and let $U,V\in \mathcal{P}\webleft (X\webright )$.

    The symmetric difference of $U$ and $V$ is the set $U\mathbin {\triangle }V$ defined by1

    \[ U\mathbin {\triangle }V \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\setminus V\webright )\cup \webleft (V\setminus U\webright ). \]


    1. 1Illustration:

    Let $X$ be a set.

    1. 1.

      Lack of Functoriality. The assignment $\webleft (U,V\webright )\mapsto U\mathbin {\triangle }V$ does not in general define functors

      \[ \begin{array}{ccc} U\mathbin {\triangle }-\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ -\mathbin {\triangle }V\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ -_{1}\mathbin {\triangle }-_{2}\colon \mkern -15mu & \webleft (\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright ),\subset \times \subset \webright ) \mkern -17.5mu& {}\mathbin {\to }\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ). \end{array} \]
    2. 2.

      Via Unions and Intersections. We have

      \[ U\mathbin {\triangle }V=\webleft (U\cup V\webright )\setminus \webleft (U\cap V\webright ) \]

      for each $U,V\in \mathcal{P}\webleft (X\webright )$, as in the Venn diagram

    3. 3.

      Symmetric Differences of Disjoint Sets. If $U$ and $V$ are disjoint, then we have

      \[ U\mathbin {\triangle }V=U\cup V. \]
    4. 4.

      Associativity. The diagram

      commutes, i.e. we have

      \[ \webleft (U\mathbin {\triangle }V\webright )\mathbin {\triangle }W = U\mathbin {\triangle }\webleft (V\mathbin {\triangle }W\webright ) \]

      for each $U,V,W\in \mathcal{P}\webleft (X\webright )$, as in the Venn diagram

    5. 5.

      Unitality. The diagrams

      commute, i.e. we have

      \begin{align*} U\mathbin {\triangle }\text{Ø}& = U,\\ \text{Ø}\mathbin {\triangle }U & = U \end{align*}

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    6. 6.

      Commutativity. The diagram

      commutes, i.e. we have

      \[ U\mathbin {\triangle }V = V\mathbin {\triangle }U \]

      for each $U,V\in \mathcal{P}\webleft (X\webright )$.

    7. 7.

      Invertibility. We have

      \[ U\mathbin {\triangle }U = \text{Ø} \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    8. 8.

      Interaction With Unions. We have

      \[ \webleft (U\mathbin {\triangle }V\webright )\cup \webleft (V\mathbin {\triangle }T\webright ) = \webleft (U\cup V\cup W\webright )\setminus \webleft (U\cap V\cap W\webright ) \]

      for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

    9. 9.

      Interaction With Complements I. We have

      \[ U\mathbin {\triangle }U^{\textsf{c}}= X \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    10. 10.

      Interaction With Complements II. We have

      \begin{align*} U\mathbin {\triangle }X & = U^{\textsf{c}},\\ X\mathbin {\triangle }U & = U^{\textsf{c}}\end{align*}

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    11. 11.

      Interaction With Complements III. The diagram

      commutes, i.e. we have

      \[ U^{\textsf{c}}\mathbin {\triangle }V^{\textsf{c}}=U\mathbin {\triangle }V \]

      for each $U,V\in \mathcal{P}\webleft (X\webright )$.

    12. 12.

      “Transitivity”. We have

      \[ \webleft (U\mathbin {\triangle }V\webright )\mathbin {\triangle }\webleft (V\mathbin {\triangle }W\webright )=U\mathbin {\triangle }W \]

      for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

    13. 13.

      The Triangle Inequality for Symmetric Differences. We have

      \[ U\mathbin {\triangle }W\subset U\mathbin {\triangle }V\cup V\mathbin {\triangle }W \]

      for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

    14. 14.

      Distributivity Over Intersections. We have

      \begin{align*} U\cap \webleft (V\mathbin {\triangle }W\webright ) & = \webleft (U\cap V\webright )\mathbin {\triangle }\webleft (U\cap W\webright ),\\ \webleft (U\mathbin {\triangle }V\webright )\cap W & = \webleft (U\cap W\webright )\mathbin {\triangle }\webleft (V\cap W\webright ) \end{align*}

      for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  • 15.

    Interaction With Characteristic Functions. We have

    \[ \chi _{U\mathbin {\triangle }V}=\chi _{U}+\chi _{V}-2\chi _{U\cap V} \]

    and thus, in particular, we have

    \[ \chi _{U\mathbin {\triangle }V}\equiv \chi _{U}+\chi _{V}\ \ (\mathrm{mod}\ 2) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 16.

    Bijectivity. Given $U,V\in \mathcal{P}\webleft (X\webright )$, the maps

    \begin{align*} U\mathbin {\triangle }- & \colon \mathcal{P}\webleft (X\webright ) \to \mathcal{P}\webleft (X\webright ),\\ -\mathbin {\triangle }V & \colon \mathcal{P}\webleft (X\webright ) \to \mathcal{P}\webleft (X\webright ) \end{align*}

    are bijections with inverses given by

    \begin{align*} \webleft (U\mathbin {\triangle }-\webright )^{-1} & = -\cup \webleft (U\cap -\webright ),\\ \webleft (-\mathbin {\triangle }V\webright )^{-1} & = -\cup \webleft (V\cap -\webright ). \end{align*}

    Moreover, the map

    is a bijection of $\mathcal{P}\webleft (X\webright )$ onto itself sending $U$ to $V$ and $V$ to $U$.

  • 17.

    Interaction With Powersets and Groups. Let $X$ be a set.

    1. (a)

      The quadruple $\webleft (\mathcal{P}\webleft (X\webright ),\mathbin {\triangle },\text{Ø},\operatorname {\mathrm{id}}_{\mathcal{P}\webleft (X\webright )}\webright )$ is an abelian group.1

    2. (b)

      Every element of $\mathcal{P}\webleft (X\webright )$ has order $2$ with respect to $\mathbin {\triangle }$, and thus $\mathcal{P}\webleft (X\webright )$ is a Boolean group (i.e. an abelian $2$-group).

  • 18.

    Interaction With Powersets and Vector Spaces I. The pair $\webleft (\mathcal{P}\webleft (X\webright ),\alpha _{\mathcal{P}\webleft (X\webright )}\webright )$ consisting of

    • The group $\mathcal{P}\webleft (X\webright )$ of Item 17;

    • The map $\alpha _{\mathcal{P}\webleft (X\webright )}\colon \mathbb {F}_{2}\times \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (X\webright )$ defined by

      \begin{align*} 0\cdot U & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø},\\ 1\cdot U & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U; \end{align*}

    is an $\mathbb {F}_{2}$-vector space.

  • 19.

    Interaction With Powersets and Vector Spaces II. If $X$ is finite, then:

    1. (a)

      The set of singletons sets on the elements of $X$ forms a basis for the $\mathbb {F}_{2}$-vector space $\webleft (\mathcal{P}\webleft (X\webright ),\alpha _{\mathcal{P}\webleft (X\webright )}\webright )$ of Item 18.

    2. (b)

      We have

      \[ \dim \webleft (\mathcal{P}\webleft (X\webright )\webright )=\# {X}. \]
  • 20.

    Interaction With Powersets and Rings. The quintuple $\webleft (\mathcal{P}\webleft (X\webright ),\mathbin {\triangle },\cap ,\text{Ø},X\webright )$ is a commutative ring.2

  • 21.

    Interaction With Direct Images. We have a natural transformation

    with components

    \[ f_{!}\webleft (U\webright )\mathbin {\triangle }f_{!}\webleft (V\webright )\subset f_{!}\webleft (U\mathbin {\triangle }V\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 22.

    Interaction With Inverse Images. The diagram

    i.e. we have

    \[ f^{-1}\webleft (U\webright )\mathbin {\triangle }f^{-1}\webleft (V\webright )=f^{-1}\webleft (U\mathbin {\triangle }V\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (Y\webright )$.

  • 23.

    Interaction With Codirect Images. We have a natural transformation

    with components

    \[ f_{*}\webleft (U\mathbin {\triangle }V\webright )\subset f_{*}\webleft (U\webright )\mathbin {\triangle }f_{*}\webleft (V\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.


    1. 1Here are some examples:
      1. (i)

        When $X=\text{Ø}$, we have an isomorphism of groups between $\mathcal{P}\webleft (\text{Ø}\webright )$ and the trivial group:

        \[ \webleft (\mathcal{P}\webleft (\text{Ø}\webright ),\mathbin {\triangle },\text{Ø},\operatorname {\mathrm{id}}_{\mathcal{P}\webleft (\text{Ø}\webright )}\webright ) \cong \mathrm{pt}. \]
      2. (ii)

        When $X=\mathrm{pt}$, we have an isomorphism of groups between $\mathcal{P}\webleft (\mathrm{pt}\webright )$ and $\mathbb {Z}_{/2}$:

        \[ \webleft (\mathcal{P}\webleft (\mathrm{pt}\webright ),\mathbin {\triangle },\text{Ø},\operatorname {\mathrm{id}}_{\mathcal{P}\webleft (\mathrm{pt}\webright )}\webright ) \cong \mathbb {Z}_{/2}. \]
      3. (iii)

        When $X=\left\{ 0,1\right\} $, we have an isomorphism of groups between $\mathcal{P}\webleft (\left\{ 0,1\right\} \webright )$ and $\mathbb {Z}_{/2}\times \mathbb {Z}_{/2}$:

        \[ \webleft (\mathcal{P}\webleft (\left\{ 0,1\right\} \webright ),\mathbin {\triangle },\text{Ø},\operatorname {\mathrm{id}}_{\mathcal{P}\webleft (\left\{ 0,1\right\} \webright )}\webright ) \cong \mathbb {Z}_{/2}\times \mathbb {Z}_{/2}. \]
    2. 2Dangerous Bend SymbolWarning: The analogous statement replacing intersections by unions (i.e. that the quintuple $\webleft (\mathcal{P}\webleft (X\webright ),\mathbin {\triangle },\cup ,\text{Ø},X\webright )$ is a ring) is false, however. See [Proof Wiki Contributors, Symmetric Difference With Union Does Not Form Ring — Proof Wiki] for a proof.

    Item 1: Lack of Functoriality
    Omitted.

    Item 2: Via Unions and Intersections
    See [Proof Wiki Contributors, Equivalence of Definitions of Symmetric Difference — Proof Wiki].

    Item 3: Symmetric Differences of Disjoint Sets
    Since $U$ and $V$ are disjoint, we have $U\cap V=\text{Ø}$, and therefore we have

    \begin{align*} U\mathbin {\triangle }V & = \webleft (U\cup V\webright )\setminus \webleft (U\cap V\webright )\\ & = \webleft (U\cup V\webright )\setminus \text{Ø}\\ & = U\cup V, \end{align*}

    where we’ve used Item 2 and Item 12 of Proposition 4.3.10.1.2.

    Item 4: Associativity
    See [Proof Wiki Contributors, Symmetric Difference Is Associative — Proof Wiki].

    Item 5: Unitality
    This follows from Item 6 and [Proof Wiki Contributors, Symmetric Difference With Empty Set — Proof Wiki].

    Item 6: Commutativity
    See [Proof Wiki Contributors, Symmetric Difference Is Commutative — Proof Wiki].

    Item 7: Invertibility
    See [Proof Wiki Contributors, Symmetric Difference With Self Is Empty Set — Proof Wiki].

    Item 8: Interaction With Unions
    See [Proof Wiki Contributors, Union of Symmetric Differences — Proof Wiki].

    Item 9: Interaction With Complements I
    See [Proof Wiki Contributors, Symmetric Difference With Complement — Proof Wiki].

    Item 10: Interaction With Complements II
    This follows from Item 6 and [Proof Wiki Contributors, Symmetric Difference With Universe — Proof Wiki].

    Item 11: Interaction With Complements III
    See [Proof Wiki Contributors, Symmetric Difference of Complements — Proof Wiki].

    Item 12: “Transitivity”
    We have

    $\webleft (U\mathbin {\triangle }V\webright )\mathbin {\triangle }\webleft (V\mathbin {\triangle }W\webright )$

    $\mathord {=}$

    $U\mathbin {\triangle }\webleft (V\mathbin {\triangle }\webleft (V\mathbin {\triangle }W\webright )\webright )$

    (by Item 4)

    $\mathord {=}$

    $U\mathbin {\triangle }\webleft (\webleft (V\mathbin {\triangle }V\webright )\mathbin {\triangle }W\webright )$

    (by Item 4)

    $\mathord {=}$

    $U\mathbin {\triangle }\webleft (\text{Ø}\mathbin {\triangle }W\webright )$

    (by Item 7)

    $\mathord {=}$

    $U\mathbin {\triangle }W$.

    (by Item 5)

    This finishes the proof.

    Item 13: The Triangle Inequality for Symmetric Differences
    This follows from Item 12 and Item 2.

    Item 14: Distributivity Over Intersections
    See [Proof Wiki Contributors, Intersection Distributes Over Symmetric Difference — Proof Wiki].

    Item 15: Interaction With Characteristic Functions
    See [Proof Wiki Contributors, Characteristic Function of Symmetric Difference — Proof Wiki].

    Item 16: Bijectivity
    Omitted.

    Item 17: Interaction With Powersets and Groups
    Item 17a follows from Item 4, Item 5, Item 7, and Item 6, while Item 17b follows from Item 7.1

    Item 18: Interaction With Powersets and Vector Spaces I
    See [Chase, $\mathcal{P}(X)$ with symmetric difference as addition as a vector space over $\mathbb{Z}_{2}$].

    Item 19: Interaction With Powersets and Vector Spaces II
    See [Chase, $\mathcal{P}(X)$ with symmetric difference as addition as a vector space over $\mathbb{Z}_{2}$].

    Item 20: Interaction With Powersets and Rings
    This follows from Item 6 and Item 15 of Proposition 4.3.9.1.2 and Item 14 and Item 17.2

    Item 21: Interaction With Direct Images
    This is a repetition of Item 9 of Proposition 4.6.1.1.5 and is proved there.

    Item 22: Interaction With Inverse Images
    This is a repetition of Item 9 of Proposition 4.6.2.1.3 and is proved there.

    Item 23: Interaction With Codirect Images
    This is a repetition of Item 8 of Proposition 4.6.3.1.7 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: