4.6.2 Inverse Images

    Let $f\colon X\to Y$ be a function.

    The inverse image function associated to $f$ is the function1

    \[ f^{-1}\colon \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\webright ) \]

    defined by2

    \begin{align*} f^{-1}\webleft (V\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \text{we have $f\webleft (x\webright )\in V$}\right\} \end{align*}

    for each $V\in \mathcal{P}\webleft (Y\webright )$.


    1. 1Further Notation: Also written $f^{*}\colon \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\webright )$.
    2. 2Further Terminology: The set $f^{-1}\webleft (V\webright )$ is called the inverse image of $V$ by $f$.

    Identifying $\mathcal{P}\webleft (Y\webright )$ with $\mathsf{Sets}\webleft (Y,\{ \mathsf{t},\mathsf{f}\} \webright )$ via Item 2 of Proposition 4.5.1.1.4, we see that the inverse image function associated to $f$ is equivalently the function

    \[ f^{*}\colon \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\webright ) \]

    defined by

    \[ f^{*}\webleft (\chi _{V}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{V}\circ f \]

    for each $\chi _{V}\in \mathcal{P}\webleft (Y\webright )$, where $\chi _{V}\circ f$ is the composition

    \[ X\overset {f}{\to }Y\overset {\chi _{V}}{\to }\{ \mathsf{true},\mathsf{false}\} \]

    in $\mathsf{Sets}$.

    Let $f\colon X\to Y$ be a function.

    1. 1.

      Functoriality. The assignment $V\mapsto f^{-1}\webleft (V\webright )$ defines a functor

      \[ f^{-1}\colon \webleft (\mathcal{P}\webleft (Y\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ). \]

      In particular, for each $U,V\in \mathcal{P}\webleft (Y\webright )$, the following condition is satisfied:

      • (★)
      • If $U\subset V$, then $f^{-1}\webleft (U\webright )\subset f^{-1}\webleft (V\webright )$.
    2. 2.

      Triple Adjointness. We have a triple adjunction

      witnessed by:

      1. (a)

        Units and counits of the form

        \[ \begin{aligned} \operatorname {\mathrm{id}}_{\mathcal{P}\webleft (X\webright )} & \hookrightarrow f^{-1}\circ f_{!},\\ f_{!}\circ f^{-1} & \hookrightarrow \operatorname {\mathrm{id}}_{\mathcal{P}\webleft (Y\webright )},\\ \end{aligned} \qquad \begin{aligned} \operatorname {\mathrm{id}}_{\mathcal{P}\webleft (Y\webright )} & \hookrightarrow f_{*}\circ f^{-1},\\ f^{-1}\circ f_{*} & \hookrightarrow \operatorname {\mathrm{id}}_{\mathcal{P}\webleft (X\webright )}, \end{aligned} \]

        having components of the form

        \[ \begin{gathered} U \subset f^{-1}\webleft (f_{!}\webleft (U\webright )\webright ),\\ f_{!}\webleft (f^{-1}\webleft (V\webright )\webright ) \subset V, \end{gathered} \qquad \begin{gathered} V \subset f_{*}\webleft (f^{-1}\webleft (V\webright )\webright ),\\ f^{-1}\webleft (f_{*}\webleft (U\webright )\webright ) \subset U \end{gathered} \]

        indexed by $U\in \mathcal{P}\webleft (X\webright )$ and $V\in \mathcal{P}\webleft (Y\webright )$.

      2. (b)

        Bijections of sets

        \begin{align*} \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (Y\webright )}\webleft (f_{!}\webleft (U\webright ),V\webright ) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (U,f^{-1}\webleft (V\webright )\webright ),\\ \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (f^{-1}\webleft (U\webright ),V\webright ) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (U,f_{*}\webleft (V\webright )\webright ), \end{align*}

        natural in $U\in \mathcal{P}\webleft (X\webright )$ and $V\in \mathcal{P}\webleft (Y\webright )$ and (respectively) $V\in \mathcal{P}\webleft (X\webright )$ and $U\in \mathcal{P}\webleft (Y\webright )$. In particular:

        1. (i)

          The following conditions are equivalent:

          1. (I)

            We have $f_{!}\webleft (U\webright )\subset V$.

          2. (II)

            We have $U\subset f^{-1}\webleft (V\webright )$.

        2. (ii)

          The following conditions are equivalent:

          1. (I)

            We have $f^{-1}\webleft (U\webright )\subset V$.

          2. (II)

            We have $U\subset f_{*}\webleft (V\webright )$.

    3. 3.

      Interaction With Unions of Families of Subsets. The diagram

      commutes, i.e. we have

      \[ \bigcup _{V\in \mathcal{V}}f^{-1}\webleft (V\webright )=\bigcup _{U\in f^{-1}\webleft (\mathcal{U}\webright )}U \]

      for each $\mathcal{V}\in \mathcal{P}\webleft (Y\webright )$, where $f^{-1}\webleft (\mathcal{V}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f^{-1}\webright )^{-1}\webleft (\mathcal{V}\webright )$.

    4. 4.

      Interaction With Intersections of Families of Subsets. The diagram

      commutes, i.e. we have

      \[ \bigcap _{V\in \mathcal{V}}f^{-1}\webleft (V\webright )=\bigcap _{U\in f^{-1}\webleft (\mathcal{U}\webright )}U \]

      for each $\mathcal{V}\in \mathcal{P}\webleft (Y\webright )$, where $f^{-1}\webleft (\mathcal{V}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f^{-1}\webright )^{-1}\webleft (\mathcal{V}\webright )$.

    5. 5.

      Interaction With Binary Unions. The diagram

      commutes, i.e. we have

      \[ f^{-1}\webleft (U\cup V\webright )=f^{-1}\webleft (U\webright )\cup f^{-1}\webleft (V\webright ) \]

      for each $U,V\in \mathcal{P}\webleft (Y\webright )$.

    6. 6.

      Interaction With Binary Intersections. The diagram

      commutes, i.e. we have

      \[ f^{-1}\webleft (U\cap V\webright )=f^{-1}\webleft (U\webright )\cap f^{-1}\webleft (V\webright ) \]

      for each $U,V\in \mathcal{P}\webleft (Y\webright )$.

    7. 7.

      Interaction With Differences. The diagram

      commutes, i.e. we have

      \[ f^{-1}\webleft (U\setminus V\webright )=f^{-1}\webleft (U\webright )\setminus f^{-1}\webleft (V\webright ) \]

      for each $U,V\in \mathcal{P}\webleft (X\webright )$.

    8. 8.

      Interaction With Complements. The diagram

      commutes, i.e. we have

      \[ f^{-1}\webleft (U^{\textsf{c}}\webright )=f^{-1}\webleft (U\webright )^{\textsf{c}} \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

  • 9.

    Interaction With Symmetric Differences. The diagram

    i.e. we have

    \[ f^{-1}\webleft (U\webright )\mathbin {\triangle }f^{-1}\webleft (V\webright )=f^{-1}\webleft (U\mathbin {\triangle }V\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (Y\webright )$.

  • 10.

    Interaction With Internal Homs of Powersets. The diagram

    commutes, i.e. we have an equality of sets

    \[ f^{-1}\webleft (\webleft [U,V\webright ]_{Y}\webright )=\webleft [f^{-1}\webleft (U\webright ),f^{-1}\webleft (V\webright )\webright ]_{X}, \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  • 11.

    Preservation of Colimits. We have an equality of sets

    \[ f^{-1}\left(\bigcup _{i\in I}U_{i}\right)=\bigcup _{i\in I}f^{-1}\webleft (U_{i}\webright ), \]

    natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}\webleft (Y\webright )^{\times I}$. In particular, we have equalities

    \[ \begin{gathered} f^{-1}\webleft (U\webright )\cup f^{-1}\webleft (V\webright ) = f^{-1}\webleft (U\cup V\webright ),\\ f^{-1}\webleft (\text{Ø}\webright ) = \text{Ø}, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (Y\webright )$.

  • 12.

    Preservation of Limits. We have an equality of sets

    \[ f^{-1}\left(\bigcap _{i\in I}U_{i}\right)=\bigcap _{i\in I}f^{-1}\webleft (U_{i}\webright ), \]

    natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}\webleft (Y\webright )^{\times I}$. In particular, we have equalities

    \[ \begin{gathered} f^{-1}\webleft (U\webright )\cap f^{-1}\webleft (V\webright ) = f^{-1}\webleft (U\cap V\webright ),\\ f^{-1}\webleft (Y\webright ) = X, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (Y\webright )$.

  • 13.

    Symmetric Strict Monoidality With Respect to Unions. The inverse image function of Item 1 has a symmetric strict monoidal structure

    \[ \webleft (f^{-1},f^{-1,\otimes },f^{-1,\otimes }_{\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (Y\webright ),\cup ,\text{Ø}\webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\cup ,\text{Ø}\webright ), \]

    being equipped with equalities

    \[ \begin{gathered} f^{-1,\otimes }_{U,V} \colon f^{-1}\webleft (U\webright )\cup f^{-1}\webleft (V\webright ) \mathbin {\overset {=}{\rightarrow }}f^{-1}\webleft (U\cup V\webright ),\\ f^{-1,\otimes }_{\mathbb {1}} \colon \text{Ø}\mathbin {\overset {=}{\rightarrow }}f^{-1}\webleft (\text{Ø}\webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (Y\webright )$.

  • 14.

    Symmetric Strict Monoidality With Respect to Intersections. The inverse image function of Item 1 has a symmetric strict monoidal structure

    \[ \webleft (f^{-1},f^{-1,\otimes },f^{-1,\otimes }_{\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (Y\webright ),\cap ,Y\webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\cap ,X\webright ), \]

    being equipped with equalities

    \[ \begin{gathered} f^{-1,\otimes }_{U,V} \colon f^{-1}\webleft (U\webright )\cap f^{-1}\webleft (V\webright ) \mathbin {\overset {=}{\rightarrow }}f^{-1}\webleft (U\cap V\webright ),\\ f^{-1,\otimes }_{\mathbb {1}} \colon X \mathbin {\overset {=}{\rightarrow }}f^{-1}\webleft (Y\webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (Y\webright )$.

  • 15.

    Interaction With Coproducts. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. We have

    \[ \webleft (f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\webright )^{-1}\webleft (U'\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}V'\webright )=f^{-1}\webleft (U'\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g^{-1}\webleft (V'\webright ) \]

    for each $U'\in \mathcal{P}\webleft (X'\webright )$ and each $V'\in \mathcal{P}\webleft (Y'\webright )$.

  • 16.

    Interaction With Products. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. We have

    \[ \webleft (f\boxtimes _{X'\times Y'}g\webright )^{-1}\webleft (U'\boxtimes _{X'\times Y'} V'\webright )=f^{-1}\webleft (U'\webright )\boxtimes _{X\times Y} g^{-1}\webleft (V'\webright ) \]

    for each $U'\in \mathcal{P}\webleft (X'\webright )$ and each $V'\in \mathcal{P}\webleft (Y'\webright )$.

  • Item 1: Functoriality
    Omitted.

    Item 2: Triple Adjointness
    This follows from Remark 4.6.1.1.4, Remark 4.6.2.1.2, Remark 4.6.3.1.4, and Unresolved reference, Unresolved reference of Unresolved reference.

    Item 3: Interaction With Unions of Families of Subsets
    We have

    \begin{align*} \bigcup _{U\in f^{-1}\webleft (\mathcal{V}\webright )}U & = \bigcup _{U\in \left\{ f^{-1}\webleft (V\webright )\in \mathcal{P}\webleft (X\webright )\ \middle |\ V\in \mathcal{V}\right\} }U\\ & = \bigcup _{V\in \mathcal{V}}f^{-1}\webleft (V\webright ).\end{align*}

    This finishes the proof.

    Item 4: Interaction With Intersections of Families of Subsets
    We have

    \begin{align*} \bigcap _{U\in f^{-1}\webleft (\mathcal{V}\webright )}U & = \bigcap _{U\in \left\{ f^{-1}\webleft (V\webright )\in \mathcal{P}\webleft (X\webright )\ \middle |\ V\in \mathcal{V}\right\} }U\\ & = \bigcap _{V\in \mathcal{V}}f^{-1}\webleft (V\webright ).\end{align*}

    This finishes the proof.

    Item 5: Interaction With Binary Unions
    See [Proof Wiki Contributors, Preimage of Union Under Mapping — Proof Wiki].

    Item 6: Interaction With Binary Intersections
    See [Proof Wiki Contributors, Preimage of Intersection Under Mapping — Proof Wiki].

    Item 7: Interaction With Differences
    See [Proof Wiki Contributors, Preimage of Set Difference Under Mapping — Proof Wiki].

    Item 8: Interaction With Complements
    See [Proof Wiki Contributors, Complement of Preimage equals Preimage of Complement — Proof Wiki].

    Item 9: Interaction With Symmetric Differences
    We have

    \begin{align*} f^{-1}\webleft (U\mathbin {\triangle }V\webright ) & = f^{-1}\webleft (\webleft (U\cup V\webright )\setminus \webleft (U\cap V\webright )\webright )\\ & = f^{-1}\webleft (U\cup V\webright )\setminus f^{-1}\webleft (U\cap V\webright )\\ & = f^{-1}\webleft (U\webright )\cup f^{-1}\webleft (V\webright )\setminus f^{-1}\webleft (U\cap V\webright )\\ & = f^{-1}\webleft (U\webright )\cup f^{-1}\webleft (V\webright )\setminus f^{-1}\webleft (U\webright )\cap f^{-1}\webleft (V\webright )\\ & = f^{-1}\webleft (U\webright )\mathbin {\triangle }f^{-1}\webleft (V\webright ), \end{align*}

    where we have used:

    1. 1.

      Item 2 of Proposition 4.3.12.1.2 for the first equality.

    2. 2.

      Item 7 for the second equality.

    3. 3.

      Item 5 for the third equality.

    4. 4.

      Item 6 for the fourth equality.

    5. 5.

      Item 2 of Proposition 4.3.12.1.2 for the fifth equality.

    This finishes the proof.

    Item 10: Interaction With Internal Homs of Powersets
    We have

    \begin{align*} f^{-1}\webleft (\webleft [U,V\webright ]_{Y}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{-1}\webleft (U^{\textsf{c}}\cup V\webright )\\ & = f^{-1}\webleft (U^{\textsf{c}}\webright )\cup f^{-1}\webleft (V\webright )\\ & = f^{-1}\webleft (U\webright )^{\textsf{c}}\cup f^{-1}\webleft (V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [f^{-1}\webleft (U\webright ),f^{-1}\webleft (V\webright )\webright ]_{X},\end{align*}

    where we have used:

    1. 1.

      Item 8 for the second equality.

    2. 2.

      Item 5 for the third equality.

    Since $\mathcal{P}\webleft (Y\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

    Item 11: Preservation of Colimits
    This follows from Item 2 and Unresolved reference, Unresolved reference of Unresolved reference.1

    Item 12: Preservation of Limits
    This follows from Item 2 and Unresolved reference, Unresolved reference of Unresolved reference.2

    Item 13: Symmetric Strict Monoidality With Respect to Unions
    This follows from Item 11.

    Item 14: Symmetric Strict Monoidality With Respect to Intersections
    This follows from Item 12.

    Item 15: Interaction With Coproducts
    Omitted.

    Item 16: Interaction With Products
    Omitted.

    Let $f\colon X\to Y$ be a function.

    1. 1.

      Functionality I. The assignment $f\mapsto f^{-1}$ defines a function

      \[ \webleft (-\webright )^{-1}_{X,Y}\colon \mathsf{Sets}\webleft (X,Y\webright ) \to \mathsf{Sets}\webleft (\mathcal{P}\webleft (Y\webright ),\mathcal{P}\webleft (X\webright )\webright ). \]
    2. 2.

      Functionality II. The assignment $f\mapsto f^{-1}$ defines a function

      \[ \webleft (-\webright )^{-1}_{X,Y}\colon \mathsf{Sets}\webleft (X,Y\webright ) \to \mathsf{Pos}\webleft (\webleft (\mathcal{P}\webleft (Y\webright ),\subset \webright ),\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\webright ). \]
    3. 3.

      Interaction With Identities. For each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \operatorname {\mathrm{id}}^{-1}_{X}=\operatorname {\mathrm{id}}_{\mathcal{P}\webleft (X\webright )}. \]
    4. 4.

      Interaction With Composition. For each pair of composable functions $f\colon X\to Y$ and $g\colon Y\to Z$, we have


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: