4.6.2 Inverse Images

    Let $f\colon X\to Y$ be a function.

    The inverse image function associated to $f$ is the function1

    \[ f^{-1}\colon \mathcal{P}(Y)\to \mathcal{P}(X) \]

    defined by2

    \begin{align*} f^{-1}(V) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \text{we have $f(x)\in V$}\right\} \end{align*}

    for each $V\in \mathcal{P}(Y)$.


    1. 1Further Notation: Also written $f^{*}\colon \mathcal{P}(Y)\to \mathcal{P}(X)$.
    2. 2Further Terminology: The set $f^{-1}(V)$ is called the inverse image of $V$ by $f$.

    Identifying $\mathcal{P}(Y)$ with $\mathsf{Sets}(Y,\{ \mathsf{t},\mathsf{f}\} )$ via Item 2 of Proposition 4.5.1.1.4, we see that the inverse image function associated to $f$ is equivalently the function

    \[ f^{*}\colon \mathcal{P}(Y)\to \mathcal{P}(X) \]

    defined by

    \[ f^{*}(\chi _{V})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{V}\circ f \]

    for each $\chi _{V}\in \mathcal{P}(Y)$, where $\chi _{V}\circ f$ is the composition

    \[ X\overset {f}{\to }Y\overset {\chi _{V}}{\to }\{ \mathsf{true},\mathsf{false}\} \]

    in $\mathsf{Sets}$.

    Let $f\colon X\to Y$ be a function.

    1. 1.

      Functoriality. The assignment $V\mapsto f^{-1}(V)$ defines a functor

      \[ f^{-1}\colon (\mathcal{P}(Y),\subset )\to (\mathcal{P}(X),\subset ). \]

      In particular, for each $U,V\in \mathcal{P}(Y)$, the following condition is satisfied:

      • (★)
      • If $U\subset V$, then $f^{-1}(U)\subset f^{-1}(V)$.
    2. 2.

      Triple Adjointness. We have a triple adjunction

      witnessed by:

      1. (a)

        Units and counits of the form

        \[ \begin{aligned} \operatorname {\mathrm{id}}_{\mathcal{P}(X)} & \hookrightarrow f^{-1}\circ f_{!},\\ f_{!}\circ f^{-1} & \hookrightarrow \operatorname {\mathrm{id}}_{\mathcal{P}(Y)},\\ \end{aligned} \qquad \begin{aligned} \operatorname {\mathrm{id}}_{\mathcal{P}(Y)} & \hookrightarrow f_{*}\circ f^{-1},\\ f^{-1}\circ f_{*} & \hookrightarrow \operatorname {\mathrm{id}}_{\mathcal{P}(X)}. \end{aligned} \]

        In particular:

        • For each $U\in \mathcal{P}(X)$, we have $U\subset f^{-1}(f_{!}(U))$.

        • For each $U\in \mathcal{P}(X)$, we have $f^{-1}(f_{*}(U))\subset U$.

        • For each $V\in \mathcal{P}(Y)$, we have $f_{!}(f^{-1}(V))\subset V$.

        • For each $V\in \mathcal{P}(Y)$, we have $V\subset f_{*}(f^{-1}(V))$.

      2. (b)

        Bijections of sets

        \begin{align*} \operatorname {\mathrm{Hom}}_{\mathcal{P}(Y)}(f_{!}(U),V) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U,f^{-1}(V)),\\ \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(f^{-1}(U),V) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U,f_{*}(V)), \end{align*}

        natural in $U\in \mathcal{P}(X)$ and $V\in \mathcal{P}(Y)$ and (respectively) $V\in \mathcal{P}(X)$ and $U\in \mathcal{P}(Y)$. In particular:

        1. (i)

          The following conditions are equivalent:

          1. (I)

            We have $f_{!}(U)\subset V$.

          2. (II)

            We have $U\subset f^{-1}(V)$.

        2. (ii)

          The following conditions are equivalent:

          1. (I)

            We have $f^{-1}(U)\subset V$.

          2. (II)

            We have $U\subset f_{*}(V)$.

    3. 3.

      Interaction With Unions of Families of Subsets. The diagram

      commutes, i.e. we have

      \[ \bigcup _{V\in \mathcal{V}}f^{-1}(V)=\bigcup _{U\in f^{-1}(\mathcal{U})}U \]

      for each $\mathcal{V}\in \mathcal{P}(Y)$, where $f^{-1}(\mathcal{V})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(f^{-1})_{!}(\mathcal{V})$.

    4. 4.

      Interaction With Intersections of Families of Subsets. The diagram

      commutes, i.e. we have

      \[ \bigcap _{V\in \mathcal{V}}f^{-1}(V)=\bigcap _{U\in f^{-1}(\mathcal{U})}U \]

      for each $\mathcal{V}\in \mathcal{P}(Y)$, where $f^{-1}(\mathcal{V})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(f^{-1})_{!}(\mathcal{V})$.

    5. 5.

      Interaction With Binary Unions. The diagram

      commutes, i.e. we have

      \[ f^{-1}(U\cup V)=f^{-1}(U)\cup f^{-1}(V) \]

      for each $U,V\in \mathcal{P}(Y)$.

    6. 6.

      Interaction With Binary Intersections. The diagram

      commutes, i.e. we have

      \[ f^{-1}(U\cap V)=f^{-1}(U)\cap f^{-1}(V) \]

      for each $U,V\in \mathcal{P}(Y)$.

    7. 7.

      Interaction With Differences. The diagram

      commutes, i.e. we have

      \[ f^{-1}(U\setminus V)=f^{-1}(U)\setminus f^{-1}(V) \]

      for each $U,V\in \mathcal{P}(X)$.

    8. 8.

      Interaction With Complements. The diagram

      commutes, i.e. we have

      \[ f^{-1}(U^{\textsf{c}})=f^{-1}(U)^{\textsf{c}} \]

      for each $U\in \mathcal{P}(X)$.

    9. 9.

      Interaction With Symmetric Differences. The diagram

      i.e. we have

      \[ f^{-1}(U)\mathbin {\triangle }f^{-1}(V)=f^{-1}(U\mathbin {\triangle }V) \]

      for each $U,V\in \mathcal{P}(Y)$.

    10. 10.

      Interaction With Internal Homs of Powersets. The diagram

      commutes, i.e. we have an equality of sets

      \[ f^{-1}([U,V]_{Y})=[f^{-1}(U),f^{-1}(V)]_{X}, \]

      natural in $U,V\in \mathcal{P}(X)$.

    11. 11.

      Preservation of Colimits. We have an equality of sets

      \[ f^{-1}\left(\bigcup _{i\in I}U_{i}\right)=\bigcup _{i\in I}f^{-1}(U_{i}), \]

      natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}(Y)^{\times I}$. In particular, we have equalities

      \[ \begin{gathered} f^{-1}(U)\cup f^{-1}(V) = f^{-1}(U\cup V),\\ f^{-1}(\text{Ø}) = \text{Ø}, \end{gathered} \]

      natural in $U,V\in \mathcal{P}(Y)$.

    12. 12.

      Preservation of Limits. We have an equality of sets

      \[ f^{-1}\left(\bigcap _{i\in I}U_{i}\right)=\bigcap _{i\in I}f^{-1}(U_{i}), \]

      natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}(Y)^{\times I}$. In particular, we have equalities

      \[ \begin{gathered} f^{-1}(U)\cap f^{-1}(V) = f^{-1}(U\cap V),\\ f^{-1}(Y) = X, \end{gathered} \]

      natural in $U,V\in \mathcal{P}(Y)$.

    13. 13.

      Symmetric Strict Monoidality With Respect to Unions. The inverse image function of Item 1 has a symmetric strict monoidal structure

      \[ (f^{-1},f^{-1,\otimes },f^{-1,\otimes }_{\mathbb {1}}) \colon (\mathcal{P}(Y),\cup ,\text{Ø}) \to (\mathcal{P}(X),\cup ,\text{Ø}), \]

      being equipped with equalities

      \[ \begin{gathered} f^{-1,\otimes }_{U,V} \colon f^{-1}(U)\cup f^{-1}(V) \mathbin {\overset {=}{\rightarrow }}f^{-1}(U\cup V),\\ f^{-1,\otimes }_{\mathbb {1}} \colon \text{Ø}\mathbin {\overset {=}{\rightarrow }}f^{-1}(\text{Ø}), \end{gathered} \]

      natural in $U,V\in \mathcal{P}(Y)$.

  • 14.

    Symmetric Strict Monoidality With Respect to Intersections. The inverse image function of Item 1 has a symmetric strict monoidal structure

    \[ (f^{-1},f^{-1,\otimes },f^{-1,\otimes }_{\mathbb {1}}) \colon (\mathcal{P}(Y),\cap ,Y) \to (\mathcal{P}(X),\cap ,X), \]

    being equipped with equalities

    \[ \begin{gathered} f^{-1,\otimes }_{U,V} \colon f^{-1}(U)\cap f^{-1}(V) \mathbin {\overset {=}{\rightarrow }}f^{-1}(U\cap V),\\ f^{-1,\otimes }_{\mathbb {1}} \colon X \mathbin {\overset {=}{\rightarrow }}f^{-1}(Y), \end{gathered} \]

    natural in $U,V\in \mathcal{P}(Y)$.

  • 15.

    Interaction With Coproducts. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. The diagram

    commutes, i.e. we have

    \[ (f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g)^{-1}(U'\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}V')=f^{-1}(U')\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g^{-1}(V') \]

    for each $U'\in \mathcal{P}(X')$ and each $V'\in \mathcal{P}(Y')$.

  • 16.

    Interaction With Products. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. The diagram

    commutes, i.e. we have

    \[ (f\boxtimes _{X'\times Y'}g)^{-1}(U'\boxtimes _{X'\times Y'} V')=f^{-1}(U')\boxtimes _{X\times Y}g^{-1}(V') \]

    for each $U'\in \mathcal{P}(X')$ and each $V'\in \mathcal{P}(Y')$.

  • Item 1: Functoriality
    Omitted.

    Item 2: Triple Adjointness
    This follows from Remark 4.6.1.1.4, Remark 4.6.2.1.2, Remark 4.6.3.1.4, and Unresolved reference, Unresolved reference of Unresolved reference.

    Item 3: Interaction With Unions of Families of Subsets
    We have

    \begin{align*} \bigcup _{U\in f^{-1}(\mathcal{V})}U & = \bigcup _{U\in \left\{ f^{-1}(V)\in \mathcal{P}(X)\ \middle |\ V\in \mathcal{V}\right\} }U\\ & = \bigcup _{V\in \mathcal{V}}f^{-1}(V).\end{align*}

    This finishes the proof.

    Item 4: Interaction With Intersections of Families of Subsets
    We have

    \begin{align*} \bigcap _{U\in f^{-1}(\mathcal{V})}U & = \bigcap _{U\in \left\{ f^{-1}(V)\in \mathcal{P}(X)\ \middle |\ V\in \mathcal{V}\right\} }U\\ & = \bigcap _{V\in \mathcal{V}}f^{-1}(V).\end{align*}

    This finishes the proof.

    Item 5: Interaction With Binary Unions
    See [Proof Wiki Contributors, Preimage of Union Under Mapping — Proof Wiki].

    Item 6: Interaction With Binary Intersections
    See [Proof Wiki Contributors, Preimage of Intersection Under Mapping — Proof Wiki].

    Item 7: Interaction With Differences
    See [Proof Wiki Contributors, Preimage of Set Difference Under Mapping — Proof Wiki].

    Item 8: Interaction With Complements
    See [Proof Wiki Contributors, Complement of Preimage equals Preimage of Complement — Proof Wiki].

    Item 9: Interaction With Symmetric Differences
    We have

    \begin{align*} f^{-1}(U\mathbin {\triangle }V) & = f^{-1}((U\cup V)\setminus (U\cap V))\\ & = f^{-1}(U\cup V)\setminus f^{-1}(U\cap V)\\ & = f^{-1}(U)\cup f^{-1}(V)\setminus f^{-1}(U\cap V)\\ & = f^{-1}(U)\cup f^{-1}(V)\setminus f^{-1}(U)\cap f^{-1}(V)\\ & = f^{-1}(U)\mathbin {\triangle }f^{-1}(V), \end{align*}

    where we have used:

    1. 1.

      Item 2 of Proposition 4.3.12.1.2 for the first equality.

    2. 2.

      Item 7 for the second equality.

    3. 3.

      Item 5 for the third equality.

    4. 4.

      Item 6 for the fourth equality.

    5. 5.

      Item 2 of Proposition 4.3.12.1.2 for the fifth equality.

    This finishes the proof.

    Item 10: Interaction With Internal Homs of Powersets
    We have

    \begin{align*} f^{-1}([U,V]_{Y}) & = f^{-1}(U^{\textsf{c}}\cup V)\\ & = f^{-1}(U^{\textsf{c}})\cup f^{-1}(V)\\ & = f^{-1}(U)^{\textsf{c}}\cup f^{-1}(V)\\ & = [f^{-1}(U),f^{-1}(V)]_{X},\end{align*}

    where we have used:

    1. 1.

      Item 8 for the second equality.

    2. 2.

      Item 5 for the third equality.

    Since $\mathcal{P}(Y)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

    Item 11: Preservation of Colimits
    This follows from Item 2 and Unresolved reference, Unresolved reference of Unresolved reference.1

    Item 12: Preservation of Limits
    This follows from Item 2 and Unresolved reference, Unresolved reference of Unresolved reference.2

    Item 13: Symmetric Strict Monoidality With Respect to Unions
    This follows from Item 11.

    Item 14: Symmetric Strict Monoidality With Respect to Intersections
    This follows from Item 12.

    Item 15: Interaction With Coproducts
    Omitted.

    Item 16: Interaction With Products
    Omitted.

    Let $f\colon X\to Y$ be a function.

    1. 1.

      Functionality I. The assignment $f\mapsto f^{-1}$ defines a function

      \[ (-)^{-1}_{X,Y}\colon \mathsf{Sets}(X,Y) \to \mathsf{Sets}(\mathcal{P}(Y),\mathcal{P}(X)). \]
    2. 2.

      Functionality II. The assignment $f\mapsto f^{-1}$ defines a function

      \[ (-)^{-1}_{X,Y}\colon \mathsf{Sets}(X,Y) \to \mathsf{Pos}((\mathcal{P}(Y),\subset ),(\mathcal{P}(X),\subset )). \]
    3. 3.

      Interaction With Identities. For each $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, we have

      \[ \operatorname {\mathrm{id}}^{-1}_{X}=\operatorname {\mathrm{id}}_{\mathcal{P}(X)}. \]
    4. 4.

      Interaction With Composition. For each pair of composable functions $f\colon X\to Y$ and $g\colon Y\to Z$, we have


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: