Symmetric Strict Monoidality With Respect to Unions. The inverse image function of Item 1 has a symmetric strict monoidal structure
\[ \webleft (f^{-1},f^{-1,\otimes },f^{-1,\otimes }_{\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (Y\webright ),\cup ,\text{Ø}\webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\cup ,\text{Ø}\webright ), \]
being equipped with equalities
\[ \begin{gathered} f^{-1,\otimes }_{U,V} \colon f^{-1}\webleft (U\webright )\cup f^{-1}\webleft (V\webright ) \mathbin {\overset {=}{\rightarrow }}f^{-1}\webleft (U\cup V\webright ),\\ f^{-1,\otimes }_{\mathbb {1}} \colon \text{Ø}\mathbin {\overset {=}{\rightarrow }}f^{-1}\webleft (\text{Ø}\webright ), \end{gathered} \]
natural in $U,V\in \mathcal{P}\webleft (Y\webright )$.