Symmetric Strict Monoidality With Respect to Unions. The inverse image function of Item 1 has a symmetric strict monoidal structure
\[ (f^{-1},f^{-1,\otimes },f^{-1,\otimes }_{\mathbb {1}}) \colon (\mathcal{P}(Y),\cup ,\text{Ø}) \to (\mathcal{P}(X),\cup ,\text{Ø}), \]
being equipped with equalities
\[ \begin{gathered} f^{-1,\otimes }_{U,V} \colon f^{-1}(U)\cup f^{-1}(V) \mathbin {\overset {=}{\rightarrow }}f^{-1}(U\cup V),\\ f^{-1,\otimes }_{\mathbb {1}} \colon \text{Ø}\mathbin {\overset {=}{\rightarrow }}f^{-1}(\text{Ø}), \end{gathered} \]
natural in $U,V\in \mathcal{P}(Y)$.